Page 1 of 1

Multimea punctelor din planul complex (2)

Posted: Sat Dec 26, 2009 12:40 am
by Mateescu Constantin
Fie \( M \) multimea punctelor din plan de afix \( z\in\mathbb{C}^{\ast} \), astfel incat \( |\mbox{Re} z|^{|z|}\ +\ |\mbox{Im} z|^{|z|}\ =\ |z|^{|z|} \).

Determinati \( M \) si reprezentati grafic multimea in plan.

Posted: Sat Dec 26, 2009 5:38 pm
by Marius Mainea
Daca \( z=a+bi \), atunci ecuatia devine

\( |a|^{\sqrt{a^2+b^2}}+|b|^{\sqrt{a^2+b^2}}=(\sqrt{a^2+b^2})^{\sqrt{a^2+b^2}} \), \( a,b\in\mathbb{R} \)

si de aici \( sqrt{a^2+b^2}=2, \) deci \( M=\{z\in\mathbb{C}|\ |z|=2\} \).