Suma vectoriala nula

Moderators: Laurian Filip, Beniamin Bogosel, Filip Chindea

Post Reply
Claudiu Mindrila
Fermat
Posts: 520
Joined: Mon Oct 01, 2007 2:25 pm
Location: Targoviste
Contact:

Suma vectoriala nula

Post by Claudiu Mindrila »

Fie \( \triangle{ABC} \) iar \( H \) ortocentrul sau. Sa se arate ca
\( \tan A\cdot\vec{HA}+\tan B\cdot\vec{HB}+\tan C\cdot\vec{HC}=\vec{0} \)
elev, clasa a X-a, C. N. "C-tin Carabella", Targoviste
User avatar
DrAGos Calinescu
Thales
Posts: 121
Joined: Sun Dec 07, 2008 10:00 pm
Location: Pitesti

Post by DrAGos Calinescu »

In general, pentru orice punct \( O \) din plan exista relatia
\( \vec{OH}=\frac{\tan A\cdot\vec{OA}+\tan B\cdot\vec{OB}+\tan C\cdot\vec{OC}}{\tan A+\tan B+\tan C} \)
Marius Mainea
Gauss
Posts: 1077
Joined: Mon May 26, 2008 2:12 pm
Location: Gaesti (Dambovita)

Re: Suma = \vec{0}

Post by Marius Mainea »

Claudiu Mindrila wrote:
\( \tan A\cdot\vec{HA}+\tan B\cdot\vec{HB}+\tan C\cdot\vec{HC}=\vec{0} \)
Relatia se reduce la

\( \left{\begin{array}{cc}\tan B\cdot\vec{A^{\prime}B}+\tan C\cdot\vec{A^{\prime}C}=\vec{0}\\\tan A\cdot\vec{HA}+(\tan B+\tan C)\vec{HA^{\prime}}=\vec{0}\end{array} \)
Post Reply

Return to “Clasa a IX-a”