Surjectivitatea unei functii

Moderators: Filip Chindea, Andrei Velicu, Radu Titiu

Post Reply
alex2008
Leibniz
Posts: 464
Joined: Sun Oct 19, 2008 3:23 pm
Location: Tulcea

Surjectivitatea unei functii

Post by alex2008 »

Fie \( A \) o multime finita cu cel putin doua elemente si \( f:A\rightarrow A \) o functie astfel ca \( |f(x)-f(y)|<|x-y| \), oricare ar fi \( x,y\in A,\ x\neq y \). Demonstrati ca \( f \) nu e surjectiva.
. A snake that slithers on the ground can only dream of flying through the air.
User avatar
Beniamin Bogosel
Co-admin
Posts: 710
Joined: Fri Mar 07, 2008 12:01 am
Location: Timisoara sau Sofronea (Arad)
Contact:

Post by Beniamin Bogosel »

Daca presupunem ca \( f \) este surjectiva, atunci exista \( x,y \) astfel incat \( f(x)=M, f(y)=m \), cea mai mare si cea mai mica valoare din \( A \). \( f \) surjectiva si \( A \) finita, implica \( f \) injectiva, deci \( x\neq y \). Asta implica \( | M-m| < |x-y| \), ceea ce e o contradictie.
Yesterday is history,
Tomorow is a mistery,
But today is a gift.
That's why it's called present. :)

Blog
Marius Mainea
Gauss
Posts: 1077
Joined: Mon May 26, 2008 2:12 pm
Location: Gaesti (Dambovita)

Post by Marius Mainea »

Vezi si aici.
Post Reply

Return to “Clasa a X-a”