Exercitiu cu numere complexe
Moderators: Filip Chindea, Andrei Velicu, Radu Titiu
Exercitiu cu numere complexe
Fie \( z_1,\ z_2 \) si \( z_3\in \mathbb{C} \) astfel incat \( |z_1|=|z_2|=|z_3| \) si \( |z_1+z_2|+|z_1+z_3|=|z_1-z_2|+|z_1-z_3| \). Sa se arate ca \( z_2+z_3=0 \).
. A snake that slithers on the ground can only dream of flying through the air.
-
Marius Mainea
- Gauss
- Posts: 1077
- Joined: Mon May 26, 2008 2:12 pm
- Location: Gaesti (Dambovita)
Consider imaginile geometrice \( A(z_1),\ B(z_2),\ C(z_3) \) ale celor trei puncte,M si N mijloacele laturilor AB si AC , triunghiul ABC are centrul cercului circumscris in origine \( O(0) \) iar relatia din enunt devine \( 2OM+AB=2ON+AC \) de unde rezulta \( \cos B+\cos C=\sin B+\sin C \) deci \( \tan\frac{B+C}{2}=1 \), \( B+C=\frac{\pi}{2} \).
Last edited by Marius Mainea on Fri Jan 22, 2010 11:24 pm, edited 1 time in total.
-
Adriana Nistor
- Pitagora
- Posts: 82
- Joined: Thu Aug 07, 2008 10:07 pm
- Location: Drobeta Turnu Severin, Mehedinti