Ecuatie functionala pe multimea numerelor intregi

Moderators: Filip Chindea, Andrei Velicu, Radu Titiu

Post Reply
Adriana Nistor
Pitagora
Posts: 82
Joined: Thu Aug 07, 2008 10:07 pm
Location: Drobeta Turnu Severin, Mehedinti

Ecuatie functionala pe multimea numerelor intregi

Post by Adriana Nistor »

Sa se determine \( f:\mathbb{Z}->\mathbb{Z} \) , pentru care \( f(0)=1 \) si \( f(f(n))+f(n)=2n+3 \) , pentru orice \( n\in\mathbb{Z} \).
Marius Mainea
Gauss
Posts: 1077
Joined: Mon May 26, 2008 2:12 pm
Location: Gaesti (Dambovita)

Post by Marius Mainea »

Se arata prin inductie ca \( f(n)=n+1 (\forall) n\in\mathbb{N} \) si apoi ca \( f(n)=n+1 (\forall) n\in\mathbb{Z} \).


Cam asa:

\( f(f(-1))+f(-1)=1 \) si de aici , cum f e injectiva, rezulta ca \( f(-1)=0 \)

Apoi , inductie.....
Last edited by Marius Mainea on Tue Jan 26, 2010 4:04 pm, edited 4 times in total.
Adriana Nistor
Pitagora
Posts: 82
Joined: Thu Aug 07, 2008 10:07 pm
Location: Drobeta Turnu Severin, Mehedinti

Post by Adriana Nistor »

Pentru \( n\in\mathbb{N} \) demonstratia e usoara. Cum demonstram ca \( f(n)=n+1 \) pentru \( n\in\mathbb{Z} \)?
Multumesc!
Post Reply

Return to “Clasa a X-a”