Primitiva si functia intr-o ecuatie functionala

Moderators: Bogdan Posa, Beniamin Bogosel, Marius Dragoi

Post Reply
User avatar
Cezar Lupu
Site Admin
Posts: 612
Joined: Wed Sep 26, 2007 2:04 pm
Location: Bucuresti sau Constanta
Contact:

Primitiva si functia intr-o ecuatie functionala

Post by Cezar Lupu »

Determinati functiile \( f:\mathbb{R}\to\mathbb{R} \) pentru care

\( x-F(x)=(1+x^{2})(f(x)-1) \) unde \( F:\mathbb{R}\to\mathbb{R} \) este o primitiva a lui \( f \).

Cezar Lupu, R.M.I. C-ta, 2004
An infinite number of mathematicians walk into a bar. The first one orders a beer. The second orders half a beer. The third, a quarter of a beer. The bartender says “You’re all idiots”, and pours two beers.
Marius Mainea
Gauss
Posts: 1077
Joined: Mon May 26, 2008 2:12 pm
Location: Gaesti (Dambovita)

Post by Marius Mainea »

Notam \( g(x)=f(x)-1 \) si \( G \) primitiva lui \( g \) si din relatia data

\( G(x)+(1+x^2)g(x)=0 \) sau \( (e^{\arctan x}G(x))^{\prime}=0 \).

Deci \( G(x)=ke^{-\arctan x} \) adica

\( f(x)=1-k\frac{e^{-\arctan x}}{1+x^2} \), \( k\in\mathbb{R} \).
Post Reply

Return to “Analiza matematica”