Conc.interj."Grigore Moisil" Urziceni 2010 probl.1

Moderators: Bogdan Posa, Laurian Filip

Post Reply
User avatar
Andi Brojbeanu
Bernoulli
Posts: 294
Joined: Sun Mar 22, 2009 6:31 pm
Location: Targoviste (Dambovita)

Conc.interj."Grigore Moisil" Urziceni 2010 probl.1

Post by Andi Brojbeanu »

In tetraedrul \( ABCD \) trideptunghic in \( D \), unghiul \( \angle{BAD} \) su unghiul \( \angle{ACD} \) au aceasi masura, iar \( H \) este punctul de intersectie al inaltimilor \( CE \) si \( BF \) ale triunghiului \( \bigtriangleup{ABC} \).
Aratati ca: \( EH\cdot EC+ FH\cdot FB= BD\cdot DC \).
Profesor Paunescu Constantin, Urziceni
Last edited by Andi Brojbeanu on Sun May 23, 2010 3:52 pm, edited 1 time in total.
User avatar
Andi Brojbeanu
Bernoulli
Posts: 294
Joined: Sun Mar 22, 2009 6:31 pm
Location: Targoviste (Dambovita)

Post by Andi Brojbeanu »

\( ABCD \) tetraedru tridreptunghic \( \Rightarrow DC \perp DA, DC\perp DB\Rightarrow DC\perp (DAB)\Rightarrow DC\perp AB\Rightarrow AB\perp DC \).
Din \( AB\perp DC \) si \( AB\perp CE\Rightarrow AV\perp (DEC)\Rightarrow AB\perp DH\Rightarrow DH\perp AB \). Analog, \( DH\perp AC\Rightarrow DH\perp (ABC) \)
\( \Rightarrow DH \) inaltime in triunghiurile dreptunghice \( DEC \) si \( DBF \)\( \stackrel{\small T.Catetei}{\Rightarrow}EH\cdot EC=DE^2 \) si \( FH\cdot FB=DF^2 \).
Triunghiurile dreptunghice \( DAB \) si \( DCA \) sunt asemenea (conform ipotezei \( m(\angle{BAD})=m(\angle{ACD}) \)), deci: \( \frac{AD}{DC}=\frac{DB}{DA}\Rightarrow AD^2=BD\cdot DC \).
Asadar, trebuie sa demonstram ca: \( DE^2+DF^2=AD^2 \).
Cu notatiile \( AD=a, DB=b, DC=c \) si aplicand teorema inaltimii in triunghiurile dreptunghice \( ADB \) si \( ADC \) relatia devine:
\( (\frac{ab}{\sqrt{a^2+b^2}})^2+(\frac{ac}{\sqrt{a^2+c^2}})^2=a^2\Leftrightarrow \frac{a^2b^2}{a^2+b^2}+\frac{a^2c^2}{a^2+c^2}=a^2|:a^2\Leftrightarrow \frac{b^2}{a^2+b^2}+\frac{c^2}{a^2+c^2}=1\Leftrightarrow \frac{b^2}{a^2+b^2}=\frac{a^2+c^2-c^2}{a^2+c^2}\Leftrightarrow \frac{b^2}{a^2+b^2}=\frac{a^2}{a^2+c^2} \)
\( \Leftrightarrow a^2b^2+b^2c^2=a^4+b^2a^2\Leftrightarrow a^4=b^2c^2\Leftrightarrow a^2=bc\Leftrightarrow AD^2=BD\cdot DC \), adevarat.
Andi Brojbeanu
profesor, Liceul Teoretic "Lucian Blaga", Cluj-Napoca
Post Reply

Return to “Clasa a VIII-a”