Shortlist 8

Moderators: Filip Chindea, Andrei Velicu, Radu Titiu

Post Reply
Antonache Emanuel
Euclid
Posts: 37
Joined: Sat Feb 28, 2009 4:15 pm
Location: Targoviste, Dambovita

Shortlist 8

Post by Antonache Emanuel »

Fie sirul de numere reale \( (a_n)_{n>=1} \) cu \( a_1=1 \) astfel ca pentru orice numar natural nenul p, notand \( m=\frac{p(p+1)}{2} \), numerele \( a_m,a_{m+1},....,a_{m+p+1} \) sunt in progresie aritmetica cu ratia p.
a) Calculati \( a_{2003} \).
b)Exista n astfel incat \( a_n=2003 \)?
Nicolae Papacu, Shortlist 2003
Post Reply

Return to “Clasa a X-a”