JBTST I 2010, Problema 1

Moderators: Laurian Filip, Filip Chindea, maky, Cosmin Pohoata

Post Reply
User avatar
Andi Brojbeanu
Bernoulli
Posts: 294
Joined: Sun Mar 22, 2009 6:31 pm
Location: Targoviste (Dambovita)

JBTST I 2010, Problema 1

Post by Andi Brojbeanu »

Sa se determine numerele prime \( p, q, r \) cu proprietatea ca
\( \frac{1}{p}+\frac{1}{q}+\frac{1}{r}\ge 1 \).
Last edited by Andi Brojbeanu on Mon Apr 26, 2010 3:57 pm, edited 1 time in total.
Andi Brojbeanu
profesor, Liceul Teoretic "Lucian Blaga", Cluj-Napoca
Alin
Euclid
Posts: 14
Joined: Sat Mar 27, 2010 12:57 pm

Post by Alin »

Pentru orice \( p \) numar prim, \( p\ge 5 \) este adevarata inegalitatea \( \frac{1}{p}\le \frac{1}{5} \). O aplicam de 3 ori pentru \( p,q,r \) si obtinem ca \( \frac{1}{p}+\frac{1}{q}+\frac{1}{r}\le \frac{1}{5}+\frac{1}{5}+\frac{1}{5}<1 \). Deci numerele \( p,q,r \) pot fi doar 2 sau 3. Avem multimea solutiilor de triplete \( (p,q,r)=\left{ (2,2,2), (2,2,3), (2,3,2), (3,2,2), (2,3,3), (3,2,3), (3,3,2), (3,3,3) \right} \).
enescu
Pitagora
Posts: 60
Joined: Tue May 20, 2008 10:08 pm

Post by enescu »

Dar \( \frac12+\frac13+\frac15>1, \) nu?
Bogdan Enescu
User avatar
Laurian Filip
Site Admin
Posts: 344
Joined: Sun Nov 25, 2007 2:34 am
Location: Bucuresti/Arad
Contact:

Post by Laurian Filip »

Alin wrote:Pentru orice \( p \) numar prim, \( p\ge 5 \) este adevarata inegalitatea \( \frac{1}{p}\le \frac{1}{5} \). O aplicam de 3 ori pentru \( p,q,r \) si obtinem ca \( \frac{1}{p}+\frac{1}{q}+\frac{1}{r}\le \frac{1}{5}+\frac{1}{5}+\frac{1}{5}<1 \)..
Ce ai aratat tu pana aici este ca cele 3 numere prime nu pot fi simultan mai mari sau egale cu 5. Acest lucru nu implica faptul ca toate cele 3 numere sunt mai mici decat 5!
User avatar
Beniamin Bogosel
Co-admin
Posts: 710
Joined: Fri Mar 07, 2008 12:01 am
Location: Timisoara sau Sofronea (Arad)
Contact:

Post by Beniamin Bogosel »

Se poate aborda problema similar cu rezolvarea ecuatiei \( \frac{1}{x}+\frac{1}{y}+\frac{1}{z}=1 \).

Se alege o ordonare \( p\leq q\leq r \), si se ia cel mai mic dintre \( p,q,r \), care va trebui sa fie mai mic sau egal cu 3. Avem doua cazuri: pentru \( p=2,\ p=3 \). Mai departe, iar se alege cel mai mic dintre cele ramase, si etc.
Yesterday is history,
Tomorow is a mistery,
But today is a gift.
That's why it's called present. :)

Blog
Post Reply

Return to “Teoria Numerelor”