1. Sa se arate ca, pentru orice numere reale \( x, y, z, t \)
\( \sqrt{(x^2+xy+y^2)(z^2+zt+t^2)}+\sqrt{(y^2-yz+z^2)(x^2-xt+t^2)}>(x+z)(y+t) \). Sa se precizeze in ce conditii se realizeaza egalitatea.
Calin Burdusel, Targoviste
2. Sa se arate ca, daca \( a, b, c \) sunt numere reale pozitive cu proprietatea \( abc=1 \), atunci
\( (1+a^3)(1+b^3)(1+c^3)\ge2(1+\frac{b}{a}+\frac{c}{b}+\frac{a}{c}) \).
Dan Nedeianu, Drobeta Turnu Severin
3. Sa se arate ca numerele reale \( a,b \) satisfac relatia
\( (x+y+z)^3+a(x+y+z)(xy+yz+zx)+bxyz\ge 0, \forall x, y, z\ge 0 \) daca si numai daca exista \( r\ge 0, s\ge 0 \) astfel incat \( a=-4+r, b=9-9r+s \).
Dumitru Barac, Sibiu
Trei inegalitati SHL-2010
Moderators: Laurian Filip, Beniamin Bogosel, Filip Chindea
- Andi Brojbeanu
- Bernoulli
- Posts: 294
- Joined: Sun Mar 22, 2009 6:31 pm
- Location: Targoviste (Dambovita)
Trei inegalitati SHL-2010
Andi Brojbeanu
profesor, Liceul Teoretic "Lucian Blaga", Cluj-Napoca
profesor, Liceul Teoretic "Lucian Blaga", Cluj-Napoca
-
Marius Mainea
- Gauss
- Posts: 1077
- Joined: Mon May 26, 2008 2:12 pm
- Location: Gaesti (Dambovita)