Doua inegalitati frumoase

Moderators: Laurian Filip, Filip Chindea, Radu Titiu, maky, Cosmin Pohoata

Post Reply
User avatar
Andi Brojbeanu
Bernoulli
Posts: 294
Joined: Sun Mar 22, 2009 6:31 pm
Location: Targoviste (Dambovita)

Doua inegalitati frumoase

Post by Andi Brojbeanu »

1. Fie \( a, b, c>0 \) cu \( a+b+c=1 \). Sa se arate ca:

\( \frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}+3(ab+bc+ca)\ge\frac{11}{2} \).

2. Fie \( x, y, z>0 \) cu \( x+y+z=1 \). Sa se arate ca:

\( \frac{1+xy}{x+y}+\frac{1+yz}{y+z}+\frac{1+zx}{z+x}\ge 5 \).
Andi Brojbeanu
profesor, Liceul Teoretic "Lucian Blaga", Cluj-Napoca
Post Reply

Return to “Inegalitati”