Functie clasica f(x)=x/(1+e^x) si primitiva sa

Moderators: Bogdan Posa, Beniamin Bogosel, Marius Dragoi

Post Reply
User avatar
Vlad Matei
Pitagora
Posts: 58
Joined: Wed Sep 26, 2007 6:44 pm
Location: Bucuresti

Functie clasica f(x)=x/(1+e^x) si primitiva sa

Post by Vlad Matei »

Fie functia \( f:\mathbb{R}\to \mathbb{R} \), \( \displaystyle f(x)=\frac{x}{1+e^x} \) si \( F \) primitiva sa care se anuleaza in origine.
a) Sa se arate ca \( F(1)+F(-1)=\frac{1}{2} \);
b) Definim sirul \( \displaystyle (a_{n})_{n\geq 0} \) prin \( a_{0}>0 \) si \( a_{n+1}=F(a_{n}) \) pentru \( n\geq 0 \). Sa se calculeze
\( \displaystyle \lim_{n\rightarrow \infty} \frac{1}{n}\sum_{k=1}^{n} \frac{a_{k}}{\sqrt{a_{k+1}}} \)

Florian Dumitrel, "Nicolae Coculescu" 2007
Marius Mainea
Gauss
Posts: 1077
Joined: Mon May 26, 2008 2:12 pm
Location: Gaesti (Dambovita)

Post by Marius Mainea »

a) Fie \( F(x)=\int_0^x\frac{t}{1+e^t}dt \) primitiva care se anuleaza in origine.

Atunci cu schimbarea de variabila t=-y \( F(x)=\int_0^{-x}\frac{y}{1+e^{-y}}dy=\int_0^{-x}ydy-\int_0^{-x}\frac{y}{1+e^y}dy=\frac{x^2}{2}-F(-x) \) si de aici punctul a).

b) Se arata ca sirul \( (a_n) \) este descrescator, tinde la 0 si aplicand regula lui L'Hospital

\( \lim_{x\to 0}\frac{x^2}{F(x)}=\lim_{x\to 0}\frac{2x}{f(x)}=4 \)

Asadar dupa ce folosim in prealabil criteriul Stolz-Cesaro obtinem ca limita ceruta este 2.
Laurentiu Tucaa
Thales
Posts: 145
Joined: Sun Mar 22, 2009 6:22 pm
Location: Pitesti

Post by Laurentiu Tucaa »

La punctul a) luand functia \( G:\mathbb{R}\rightarrow\mathbb{R},\ G(x)=F(x)+F(-x) \), avem G derivabila iar \( G^{\prime}(x)=f(x)-f(-x)=x \) dupa calcule. Rezulta ca \( G(x)=\frac{x^2}{2}+c,c=0(ip)=>G(x)=\frac{x^2}{2}=>g(1)=\frac{1}{2} \).
Post Reply

Return to “Analiza matematica”