Concurs IMAR 2007 - problema 2

Moderators: Laurian Filip, Filip Chindea, maky, Cosmin Pohoata

Post Reply
User avatar
maky
Pitagora
Posts: 80
Joined: Thu Sep 27, 2007 7:15 pm
Location: bucuresti

Concurs IMAR 2007 - problema 2

Post by maky »

Dat fiind un numar intreg \( n>1 \), notam cu \( \mathcal{C} \) familia tuturor configuratiilor de \( n \) puncte situate pe sfera \( S^2 \) si cu \( \mathcal{H} \) familia tuturor emisferelor inchise ale lui \( S^2 \). Determinati :
\( \max_{H\in\mathcal{H}} \min_{C\in\mathcal{C}} | H \cap C | \)

\( \min_{H\in\mathcal{H}} \max_{C\in\mathcal{C}} | H \cap C | \)

\( \max_{C\in\mathcal{C}} \min_{H\in\mathcal{H}} | H \cap C | \)

\( \min_{C\in\mathcal{C}} \max_{H\in\mathcal{H}} | H \cap C | \).
Post Reply

Return to “Combinatorica”