Concursul "Teodor Topan" - problema 2

Moderators: Laurian Filip, Beniamin Bogosel, Filip Chindea

Post Reply
User avatar
maky
Pitagora
Posts: 80
Joined: Thu Sep 27, 2007 7:15 pm
Location: bucuresti

Concursul "Teodor Topan" - problema 2

Post by maky »

Se considera sirul \( \left(a_n\right)_{n\ge{1}} \) cu \( a_1\g0 \) si \( a_{n+1}=\frac{5a_n+3}{a_n+3} \).
Aratati ca sirul \( \left(b_n\right)_{n\ge{1}} \) cu \( b_n=\frac{a_n-3}{a_n+1} \) este o progresie geometrica.
Paul Florinel, Zalau
Post Reply

Return to “Clasa a IX-a”