Concursul "Teodor Topan" - problema 3

Moderators: Laurian Filip, Beniamin Bogosel, Filip Chindea

Post Reply
User avatar
maky
Pitagora
Posts: 80
Joined: Thu Sep 27, 2007 7:15 pm
Location: bucuresti

Concursul "Teodor Topan" - problema 3

Post by maky »

Fie \( a,b\in\left[o,\infty\right) \) astfel incat \( \begin{cases}
a\le1 \\ a+b\le10\end{cases} \)
. Aratati ca \( \sqrt{a}+\sqrt{b}\le4 \).
Vlaicu Liviu
User avatar
maky
Pitagora
Posts: 80
Joined: Thu Sep 27, 2007 7:15 pm
Location: bucuresti

Post by maky »

philandrew wrote: Din Cauchy, \( (\sqrt{a} + \sqrt{b})^2 \) \( = \left( \sqrt{a} + \frac{\sqrt{b}}{3} + \frac{\sqrt{b}}{3} + \frac{\sqrt{b}}{3} \right)^2 \) \( \le 4 \left( a + \frac{b}{9} + \frac{b}{9} + \frac{b}{9} \right) \) \( = 4 \cdot \frac{2a + (a + b)}{3} \le 4 \cdot \frac{2 + 10}{3} = 16 \), deci \( \sqrt{a} + \sqrt{b} \le 4 \), cu egalitate iff \( a=1 \) si \( b=9 \). De fapt si acest gen de inegalitati este clasic :)
Amatorii pot gasi un alt exercitiu de acest tip aici.
Post Reply

Return to “Clasa a IX-a”