Sir divergent: partea fractionara a sirului armonic
Moderators: Bogdan Posa, Laurian Filip, Beniamin Bogosel, Radu Titiu, Marius Dragoi
- Cezar Lupu
- Site Admin
- Posts: 612
- Joined: Wed Sep 26, 2007 2:04 pm
- Location: Bucuresti sau Constanta
- Contact:
Sir divergent: partea fractionara a sirului armonic
Fie sirul armonic \( H_{n}=1+\frac{1}{2}+\frac{1}{3}+\ldots +\frac{1}{n} \), \( n\geq 1 \). Sa se demonstreze ca sirul \( \{H_{n}\} \) este divergent, unde \( \{x \} \) reprezinta partea fractionara a numarului \( x \).
An infinite number of mathematicians walk into a bar. The first one orders a beer. The second orders half a beer. The third, a quarter of a beer. The bartender says “You’re all idiots”, and pours two beers.
- Alin Galatan
- Site Admin
- Posts: 247
- Joined: Tue Sep 25, 2007 9:24 pm
- Location: Bucuresti/Timisoara/Moldova Noua
Stim ca \( H_n-lnn\rightarrow c \) unde c e constanta lui Euler, \( [c]=0 \).
Presupunem prin absurd ca \( \{H_n\} \) e convergent. Deci \( H_n-[H_n] \) e convergent. Adunand si scazand lnn, obtinem ca \( H_n-lnn+lnn-[H_n] \) e convergent. Cum \( H_n-ln \) e convergent, ramane ca \( [H_n]-lnn \) e convergent.
Am zis anterior ca \( [H_n-lnn]\rightarrow 0 \), deci de la un rang in sus, \( [H_n-lnn]<1\Rightarrow H_n-lnn-\{H_n-lnn\}< \) \( 1\Rightarrow H_n-\{H_n\}-lnn+\{lnn\}<1+\{H_n-lnn\}-\{H_n\}+\{lnn\}\Rightarrow [H_n]-[lnn]<3 \).
Deoarece \( H_n>lnn \), obtinem ca \( [H_n] \) ia una din urmatoarele 3 valori: \( [lnn],[lnn]+1,[lnn]+2 \).
Deci \( [H_n]-lnn\in\{-\{lnn\},-\{lnn\}+1,-\{lnn\}+2\} \), de unde obtinem ca sirul \( \{lnn\} \) are cel mult trei puncte limita.(intrucat \( H_n-[lnn] \) e convergent).
Vom demonstra ca totusi subsirul \( \{ln(2^n)\} \) este dens in [0,1], de unde contradictia.
Intrucat \( \{ln(2^n)\}=\{nln2\} \), aceasta este densa in [0,1] daca \( ln2\in \mathbb{R}-\mathbb{Q} \). (Kronecker)
Acest lucru este destul de evident. Daca ar fi rational, \( 2=e^{\frac{p}{q}}\Rightarrow e=2^{\frac{q}{p}} \),care contrazice faptul ca \( e \) este transcendent.
Presupunem prin absurd ca \( \{H_n\} \) e convergent. Deci \( H_n-[H_n] \) e convergent. Adunand si scazand lnn, obtinem ca \( H_n-lnn+lnn-[H_n] \) e convergent. Cum \( H_n-ln \) e convergent, ramane ca \( [H_n]-lnn \) e convergent.
Am zis anterior ca \( [H_n-lnn]\rightarrow 0 \), deci de la un rang in sus, \( [H_n-lnn]<1\Rightarrow H_n-lnn-\{H_n-lnn\}< \) \( 1\Rightarrow H_n-\{H_n\}-lnn+\{lnn\}<1+\{H_n-lnn\}-\{H_n\}+\{lnn\}\Rightarrow [H_n]-[lnn]<3 \).
Deoarece \( H_n>lnn \), obtinem ca \( [H_n] \) ia una din urmatoarele 3 valori: \( [lnn],[lnn]+1,[lnn]+2 \).
Deci \( [H_n]-lnn\in\{-\{lnn\},-\{lnn\}+1,-\{lnn\}+2\} \), de unde obtinem ca sirul \( \{lnn\} \) are cel mult trei puncte limita.(intrucat \( H_n-[lnn] \) e convergent).
Vom demonstra ca totusi subsirul \( \{ln(2^n)\} \) este dens in [0,1], de unde contradictia.
Intrucat \( \{ln(2^n)\}=\{nln2\} \), aceasta este densa in [0,1] daca \( ln2\in \mathbb{R}-\mathbb{Q} \). (Kronecker)
Acest lucru este destul de evident. Daca ar fi rational, \( 2=e^{\frac{p}{q}}\Rightarrow e=2^{\frac{q}{p}} \),care contrazice faptul ca \( e \) este transcendent.
- Cezar Lupu
- Site Admin
- Posts: 612
- Joined: Wed Sep 26, 2007 2:04 pm
- Location: Bucuresti sau Constanta
- Contact:
O sa postez doua solutii la aceasta frumoasa problema:
Solutia 1.
Sa presupunem, prin reducere la absurd, ca sirul \( x_{n}=\{H_{n}\} \)este convergent. Rezulta ca exista \( \lim_{n\to\infty} x_{n}=l\in\mathbb{R} \).
De aici, se deduce imediat ca \( \lim_{n\to\infty} x_{n+1}-x_{n}=0 \), de unde avem ca \( \lim_{n\to\infty}\frac{1}{n+1}+\[H_{n}\]-\[H_{n+1}\]=0 \). Consideram sirul \( y_{n}=\[H_{n}\]-\[H_{n+1}\] \). Evident ca \( y_{n} \) este convergent la zero si cum \( y_{n}\in\mathbb{Z} \) rezulta ca de la un rang incolo el este constant. Prin urmare, sirul \( y_n \) este constant de la un rang incolo. Asta inseamna ca \( \[H_{n}\]=k+\[H_{n+1}\] \). Rezulta ca \( H_{n} \) este cuprins intre doi intregi, ceea ce reprezinta o contradictie, avand in vedere ca \( H_{n}>ln n \).
Solutia 2.
Sa presupunem prin absurd ca sirul \( x_{n}=\{H_{n}\} \) este convergent.
Atunci, vom avea
\( x_{2n}-x_{n}=1+\frac{1}{2}+\ldots\frac{1}{2n}-ln 2n-\left(1+\frac{1}{2}+\ldots+\frac{1}{n}-ln n\right)+ln 2+b_{n} \), unde \( b_{n}\in\mathbb{Z} \). Pe de alta parte, din presupunerea facuta rezulta ca \( \lim_{n\to\infty} x_{2n}-x_{n}=0 \). Dar, se stie ca \( \lim_{n\to\infty} H_{2n}-ln 2n=\gamma \) si \( \lim_{n\to\infty}H_{n}-ln n=\gamma \), unde \( \gamma=0,577... \) reprezinta constanta Euler-Mascheroni si se defineste ca fiind \( \gamma=1-\int_1^{\infty}\frac{\{t\}}{t^2}dt \).
Obtinem astfel ca \( ln 2\in\mathbb{Z} \), ceea ce reprezinta o contradictie.
Solutia 1.
Sa presupunem, prin reducere la absurd, ca sirul \( x_{n}=\{H_{n}\} \)este convergent. Rezulta ca exista \( \lim_{n\to\infty} x_{n}=l\in\mathbb{R} \).
De aici, se deduce imediat ca \( \lim_{n\to\infty} x_{n+1}-x_{n}=0 \), de unde avem ca \( \lim_{n\to\infty}\frac{1}{n+1}+\[H_{n}\]-\[H_{n+1}\]=0 \). Consideram sirul \( y_{n}=\[H_{n}\]-\[H_{n+1}\] \). Evident ca \( y_{n} \) este convergent la zero si cum \( y_{n}\in\mathbb{Z} \) rezulta ca de la un rang incolo el este constant. Prin urmare, sirul \( y_n \) este constant de la un rang incolo. Asta inseamna ca \( \[H_{n}\]=k+\[H_{n+1}\] \). Rezulta ca \( H_{n} \) este cuprins intre doi intregi, ceea ce reprezinta o contradictie, avand in vedere ca \( H_{n}>ln n \).
Solutia 2.
Sa presupunem prin absurd ca sirul \( x_{n}=\{H_{n}\} \) este convergent.
Atunci, vom avea
\( x_{2n}-x_{n}=1+\frac{1}{2}+\ldots\frac{1}{2n}-ln 2n-\left(1+\frac{1}{2}+\ldots+\frac{1}{n}-ln n\right)+ln 2+b_{n} \), unde \( b_{n}\in\mathbb{Z} \). Pe de alta parte, din presupunerea facuta rezulta ca \( \lim_{n\to\infty} x_{2n}-x_{n}=0 \). Dar, se stie ca \( \lim_{n\to\infty} H_{2n}-ln 2n=\gamma \) si \( \lim_{n\to\infty}H_{n}-ln n=\gamma \), unde \( \gamma=0,577... \) reprezinta constanta Euler-Mascheroni si se defineste ca fiind \( \gamma=1-\int_1^{\infty}\frac{\{t\}}{t^2}dt \).
Obtinem astfel ca \( ln 2\in\mathbb{Z} \), ceea ce reprezinta o contradictie.
Last edited by Cezar Lupu on Fri Sep 28, 2007 5:08 pm, edited 2 times in total.
An infinite number of mathematicians walk into a bar. The first one orders a beer. The second orders half a beer. The third, a quarter of a beer. The bartender says “You’re all idiots”, and pours two beers.
- Alin Galatan
- Site Admin
- Posts: 247
- Joined: Tue Sep 25, 2007 9:24 pm
- Location: Bucuresti/Timisoara/Moldova Noua
- Alin Galatan
- Site Admin
- Posts: 247
- Joined: Tue Sep 25, 2007 9:24 pm
- Location: Bucuresti/Timisoara/Moldova Noua
Tu ai zis ca \( ln2 \) nu e intreg, dar asta tot din transcendenta lui e iese. Cel putin eu nu vad alta metoda de a arata asta. Oricum metoda a doua e cea mai eleganta.
Last edited by Alin Galatan on Fri Sep 28, 2007 11:48 pm, edited 1 time in total.
- Cezar Lupu
- Site Admin
- Posts: 612
- Joined: Wed Sep 26, 2007 2:04 pm
- Location: Bucuresti sau Constanta
- Contact:
Ce nu vezi a arata, ca \( ln 2 \) nu este intreg? Sa fim seriosi, se poate arata al nabii de usor ca \( ln 2\in\mathbb{R}-\mathbb{Q} \), dar pana la urma, exact cum ai zis si tu, se reduce latranscendenta lui \( e \). 
Last edited by Cezar Lupu on Fri Sep 28, 2007 11:48 pm, edited 1 time in total.
An infinite number of mathematicians walk into a bar. The first one orders a beer. The second orders half a beer. The third, a quarter of a beer. The bartender says “You’re all idiots”, and pours two beers.
- Alin Galatan
- Site Admin
- Posts: 247
- Joined: Tue Sep 25, 2007 9:24 pm
- Location: Bucuresti/Timisoara/Moldova Noua
-
pohoatza
Pentru o demonstratie a irationalitatii lui \( \ln{2} \) fara utilizarea transcendentei lui \( e \), ase vedea
Similarities in Irrationality Proofs for \( \pi \), \( \ln{2} \), \( \zeta(2) \), and \( \zeta(3) \), Dirk Huylebrouck, The American Mathematical Monthly, Vol. 108, No. 3. (Mar., 2001), pp. 222-231: http://www.mateforum.ro/articole/iratio ... imoase.pdf
Similarities in Irrationality Proofs for \( \pi \), \( \ln{2} \), \( \zeta(2) \), and \( \zeta(3) \), Dirk Huylebrouck, The American Mathematical Monthly, Vol. 108, No. 3. (Mar., 2001), pp. 222-231: http://www.mateforum.ro/articole/iratio ... imoase.pdf
- Cezar Lupu
- Site Admin
- Posts: 612
- Joined: Wed Sep 26, 2007 2:04 pm
- Location: Bucuresti sau Constanta
- Contact:
De fapt ideea provine de demult, anume din anul 1979, cand matematicianul francez Roger Apery a demonstrat ca \( \zeta(3)=\sum_{n=1}^{\infty}\frac{1}{n^{3}} \) este irational.
An infinite number of mathematicians walk into a bar. The first one orders a beer. The second orders half a beer. The third, a quarter of a beer. The bartender says “You’re all idiots”, and pours two beers.