Sirul a_n=n|sin n| nu are limita

Moderators: Mihai Berbec, Liviu Paunescu

Post Reply
User avatar
Cezar Lupu
Site Admin
Posts: 612
Joined: Wed Sep 26, 2007 2:04 pm
Location: Bucuresti sau Constanta
Contact:

Sirul a_n=n|sin n| nu are limita

Post by Cezar Lupu »

Sa se demonstreze ca sirul \( a_{n}=n | \sin n|,\ n\geq 1 \) nu are limita.
An infinite number of mathematicians walk into a bar. The first one orders a beer. The second orders half a beer. The third, a quarter of a beer. The bartender says “You’re all idiots”, and pours two beers.
aleph
Thales
Posts: 123
Joined: Mon Dec 24, 2007 2:06 am

Post by aleph »

a) Multimea \( \{|sin(n)|:\, n \in\mathbb{N}\} \) este densa in [0,1]. Exista deci un sir \( n_k\in\mathbb{N} \) cu \( |sin(n_k)| \to 1 \), deci \( a_{n_k}\to\infty \).

b) \( \pi \) fiind irational, exista o infinitate de perechi \( (p,q) \in\mathbb{N}^2, p,q > 2 \) astfel incat \( |\pi - p/q| < 1/q^2 \). Rezulta \( |sin(p)| = |sin(p - q\pi)|<1/q \), deci \( a_p < p/q < 4 \). Se obtine astfel un subsir marginit al lui \( (a_n) \).

Prin urmare sirul \( (a_n) \) nu are limita.

P.S. Ce se intampla cu sirul \( b_{n}=n^{2008}| \sin n| \)?
Post Reply

Return to “Analiza reala”