Probabilitate originala (AMM)

Moderators: Laurian Filip, Filip Chindea, maky, Cosmin Pohoata

Post Reply
User avatar
Filip Chindea
Newton
Posts: 324
Joined: Thu Sep 27, 2007 9:01 pm
Location: Bucharest

Probabilitate originala (AMM)

Post by Filip Chindea »

Sa se arate ca in calendarul curent ziua \( 13 \) a unei luni va pica cel mai des vineri.
Observatie. Calendarul curent are perioada de \( 400 \) de ani. Fiecare al \( 4 \)-lea an are \( 366 \) zile, cu exceptia anilor \( 100, 200, 300 \), modulo \( 400 \).
Last edited by Filip Chindea on Fri Jun 13, 2008 9:29 pm, edited 2 times in total.
Life is complex: it has real and imaginary components.
pohoatza

Post by pohoatza »

Absolut genial. Nu stiam lucrul asta. Tocmai am citit 2 articole cu solutii asupra acestei probleme si mi se par extraordinare. Acestea sunt:

1) To prove that the 13th day of the month is more likely to be a friday than any other day of the week, S.R.Baxter, Mathematical Gazette, 1969.

2) Friday 13th, J.O.Irwin, Mathematical Gazette, 1971.

O sa le atasez pe forum imediat dupa ce upload-ul va fi posibil.

[Edit: Apropo de ce zice Cezar, asta e postul #13 al meu :D]
Last edited by pohoatza on Fri Sep 28, 2007 8:32 pm, edited 2 times in total.
User avatar
Cezar Lupu
Site Admin
Posts: 612
Joined: Wed Sep 26, 2007 2:04 pm
Location: Bucuresti sau Constanta
Contact:

Post by Cezar Lupu »

Da, intr-adevar. Si mie mi se pare absolut genial. Asta imi aminteste de filmul ala horror, Friday the 13 . :twisted:
An infinite number of mathematicians walk into a bar. The first one orders a beer. The second orders half a beer. The third, a quarter of a beer. The bartender says “You’re all idiots”, and pours two beers.
User avatar
Filip Chindea
Newton
Posts: 324
Joined: Thu Sep 27, 2007 9:01 pm
Location: Bucharest

Post by Filip Chindea »

Eu am gasit-o ca aplicatie la articolul
Generating Functions, Milan Novakovic, Training materials, The IMO Compendium Group (2007).
(Pentru a-l download-a gratuit click aici.)
Life is complex: it has real and imaginary components.
Post Reply

Return to “Combinatorica”