Poligoane regulate cu varfurile puncte laticiale
Moderators: Laurian Filip, Filip Chindea, maky, Cosmin Pohoata, Virgil Nicula
- Cezar Lupu
- Site Admin
- Posts: 612
- Joined: Wed Sep 26, 2007 2:04 pm
- Location: Bucuresti sau Constanta
- Contact:
Poligoane regulate cu varfurile puncte laticiale
Sa se determine toate poligoanele regulate cu varfurile puncte laticiale.
An infinite number of mathematicians walk into a bar. The first one orders a beer. The second orders half a beer. The third, a quarter of a beer. The bartender says “You’re all idiots”, and pours two beers.
- Vlad Matei
- Pitagora
- Posts: 58
- Joined: Wed Sep 26, 2007 6:44 pm
- Location: Bucuresti
Fie \( O \) centrul poligonului si \( R \) raza sa. Acum sa ne uitam la latura \( A_{i}A_{i+1} \) si la diagonala \( A_{i}A_{i+2} \). Avem ca
\( A_{i}A_{i+1}=2R \sin{\frac{\pi}{n}} \) si \( A_{i}A_{i+2}=2R \sin{\frac{2\pi}{n}}=4R \sin{\frac{\pi}{n}} \cos{\frac{\pi}{n}} \).
Daca poligonul are varfuri in latice avem ca \( A_{i}A_{i+1}^2 \) si \( A_{i}A_{i+2}^2 \) sunt numere intregi, asadar \( \displaystyle \cos^2{\left(\frac{\pi}{n}\right)} \) este rational adica \( \cos{\frac{2\pi}{n}} \) este rational. Acum folosind intregi algebrici se vede usor ca singurele cazuri posibile sunt \( \cos{\frac{2\pi}{n}}\in\{-1,-\frac{1}{2},0,\frac{1}{2},1\} \) si ramane sa verificam.
\( A_{i}A_{i+1}=2R \sin{\frac{\pi}{n}} \) si \( A_{i}A_{i+2}=2R \sin{\frac{2\pi}{n}}=4R \sin{\frac{\pi}{n}} \cos{\frac{\pi}{n}} \).
Daca poligonul are varfuri in latice avem ca \( A_{i}A_{i+1}^2 \) si \( A_{i}A_{i+2}^2 \) sunt numere intregi, asadar \( \displaystyle \cos^2{\left(\frac{\pi}{n}\right)} \) este rational adica \( \cos{\frac{2\pi}{n}} \) este rational. Acum folosind intregi algebrici se vede usor ca singurele cazuri posibile sunt \( \cos{\frac{2\pi}{n}}\in\{-1,-\frac{1}{2},0,\frac{1}{2},1\} \) si ramane sa verificam.