Suma Riemann de integrale improprii

Moderators: Mihai Berbec, Liviu Paunescu

Post Reply
User avatar
Cezar Lupu
Site Admin
Posts: 612
Joined: Wed Sep 26, 2007 2:04 pm
Location: Bucuresti sau Constanta
Contact:

Suma Riemann de integrale improprii

Post by Cezar Lupu »

Consideram \( f: (0,1) \to\mathbb{R} \) o functie monotona astfel incat integrala improprie \( \int_0^1f(x)dx \) sa existe. Sa se arate ca

\( \lim_{n\to\infty}\frac{1}{n}\left(f\left(\frac{1}{n}\right)+f\left(\frac{2}{n}\right)+\ldots+f\left(\frac{n-1}{n}\right)\right)=\int_0^1f(x)dx \).
An infinite number of mathematicians walk into a bar. The first one orders a beer. The second orders half a beer. The third, a quarter of a beer. The bartender says “You’re all idiots”, and pours two beers.
Post Reply

Return to “Analiza reala”