Serie de calculat cu termeni ai sirului armonic

Moderators: Mihai Berbec, Liviu Paunescu

Post Reply
User avatar
Cezar Lupu
Site Admin
Posts: 612
Joined: Wed Sep 26, 2007 2:04 pm
Location: Bucuresti sau Constanta
Contact:

Serie de calculat cu termeni ai sirului armonic

Post by Cezar Lupu »

Pentru orice \( k\geq 2 \) definim sirurile partiale armonice (sirurile k-armonice), \( H_{k}=\sum_{j=1}^{k}\frac{1}{j} \). Sa se calculeze

\( \sum_{k=2}^{\infty}\frac{(2k+1)H_{k}^{2}}{(k-1)k(k+1)(k+2)} \).

American Mathematical Monthly, 2007
An infinite number of mathematicians walk into a bar. The first one orders a beer. The second orders half a beer. The third, a quarter of a beer. The bartender says “You’re all idiots”, and pours two beers.
aleph
Thales
Posts: 123
Joined: Mon Dec 24, 2007 2:06 am

Post by aleph »

Inversati ordinea de sumare, etc. Rezulta 7/12.
Post Reply

Return to “Analiza reala”