Pentru orice \( k\geq 2 \) definim sirurile partiale armonice (sirurile k-armonice), \( H_{k}=\sum_{j=1}^{k}\frac{1}{j} \). Sa se calculeze
\( \sum_{k=2}^{\infty}\frac{(2k+1)H_{k}^{2}}{(k-1)k(k+1)(k+2)} \).
American Mathematical Monthly, 2007
Serie de calculat cu termeni ai sirului armonic
Moderators: Mihai Berbec, Liviu Paunescu
- Cezar Lupu
- Site Admin
- Posts: 612
- Joined: Wed Sep 26, 2007 2:04 pm
- Location: Bucuresti sau Constanta
- Contact:
Serie de calculat cu termeni ai sirului armonic
An infinite number of mathematicians walk into a bar. The first one orders a beer. The second orders half a beer. The third, a quarter of a beer. The bartender says “You’re all idiots”, and pours two beers.