Page 1 of 1

Serie de calculat cu termeni ai sirului armonic

Posted: Wed Jan 09, 2008 3:57 am
by Cezar Lupu
Pentru orice \( k\geq 2 \) definim sirurile partiale armonice (sirurile k-armonice), \( H_{k}=\sum_{j=1}^{k}\frac{1}{j} \). Sa se calculeze

\( \sum_{k=2}^{\infty}\frac{(2k+1)H_{k}^{2}}{(k-1)k(k+1)(k+2)} \).

American Mathematical Monthly, 2007

Posted: Thu Jan 10, 2008 4:20 pm
by aleph
Inversati ordinea de sumare, etc. Rezulta 7/12.