Convergenta legata de functia Zeta

Moderators: Bogdan Posa, Laurian Filip, Beniamin Bogosel, Radu Titiu, Marius Dragoi

Post Reply
User avatar
Filip Chindea
Newton
Posts: 324
Joined: Thu Sep 27, 2007 9:01 pm
Location: Bucharest

Convergenta legata de functia Zeta

Post by Filip Chindea »

Fie \( m \ge 2 \) un intreg pozitiv. Definim sirul \( \left( x_n^{(m)} \right)_{n \ge 1} \) prin \( x_n^{(m)} = \sum_{k=1}^n k^{-m} \), pentru orice \( n \ge 1 \).
a) Demonstrati ca \( \left( x_n^{(m)} \right)_{n \ge 1} \) este convergent.
b) Notam cu \( \ell_m \) limita lui \( \left( x_n^{(m)} \right)_{n \ge 1} \). Determinati intregii pozitivi \( k \) pentru care exista si este nenula si finita limita
\( \lim_{n \rightarrow \infty} n^k\left( \ell_m - x_n^{(m)} \right) \).
Life is complex: it has real and imaginary components.
Post Reply

Return to “Analiza matematica”