Rezolvati in \( \mathbb{R} \) sistemul \( \begin{cases}
\left[\frac{x+3}{2}\right]=\frac{y-2}{3}\\
\left[\frac{y-1}{2}\right]=\frac{x+2}{2}\end{cases} \).
Sistem de ecuatii.
Moderators: Bogdan Posa, Laurian Filip
-
Claudiu Mindrila
- Fermat
- Posts: 520
- Joined: Mon Oct 01, 2007 2:25 pm
- Location: Targoviste
- Contact:
Sistem de ecuatii.
elev, clasa a X-a, C. N. "C-tin Carabella", Targoviste
-
Marius Mainea
- Gauss
- Posts: 1077
- Joined: Mon May 26, 2008 2:12 pm
- Location: Gaesti (Dambovita)
Din ecuatia a doua \( \frac{x+2}{2}\in\mathbb{Z} \) de unde \( x=2k \) \( k\in\mathbb{Z} \)
Inlocuind in prima \( \left[\frac{2k+3}{2}\right]=\frac{y-2}{3} \) de unde \( y=3k+5 \) si atunci ecuatia a doua devine
\( \left[\frac{3k}{2}\right]=k-1 \) deci
\( k-1\le \frac{3k}{2}< k \)
Asadar \( k\in\{-2,-1\} \) deci solutiile sunt \( (-4,-1);(-2,2) \)
Inlocuind in prima \( \left[\frac{2k+3}{2}\right]=\frac{y-2}{3} \) de unde \( y=3k+5 \) si atunci ecuatia a doua devine
\( \left[\frac{3k}{2}\right]=k-1 \) deci
\( k-1\le \frac{3k}{2}< k \)
Asadar \( k\in\{-2,-1\} \) deci solutiile sunt \( (-4,-1);(-2,2) \)