Sistem de ecuatii.

Moderators: Bogdan Posa, Laurian Filip

Post Reply
Claudiu Mindrila
Fermat
Posts: 520
Joined: Mon Oct 01, 2007 2:25 pm
Location: Targoviste
Contact:

Sistem de ecuatii.

Post by Claudiu Mindrila »

Rezolvati in \( \mathbb{R} \) sistemul \( \begin{cases}
\left[\frac{x+3}{2}\right]=\frac{y-2}{3}\\
\left[\frac{y-1}{2}\right]=\frac{x+2}{2}\end{cases} \)
.
elev, clasa a X-a, C. N. "C-tin Carabella", Targoviste
Marius Mainea
Gauss
Posts: 1077
Joined: Mon May 26, 2008 2:12 pm
Location: Gaesti (Dambovita)

Post by Marius Mainea »

Din ecuatia a doua \( \frac{x+2}{2}\in\mathbb{Z} \) de unde \( x=2k \) \( k\in\mathbb{Z} \)

Inlocuind in prima \( \left[\frac{2k+3}{2}\right]=\frac{y-2}{3} \) de unde \( y=3k+5 \) si atunci ecuatia a doua devine

\( \left[\frac{3k}{2}\right]=k-1 \) deci

\( k-1\le \frac{3k}{2}< k \)

Asadar \( k\in\{-2,-1\} \) deci solutiile sunt \( (-4,-1);(-2,2) \)
Post Reply

Return to “Clasa a VIII-a”