Egalitate

Moderators: Bogdan Posa, Laurian Filip

Post Reply
Claudiu Mindrila
Fermat
Posts: 520
Joined: Mon Oct 01, 2007 2:25 pm
Location: Targoviste
Contact:

Egalitate

Post by Claudiu Mindrila »

Fie \( a,b\in \mathbb{R} \) astfel incat \( a^2(a-2b)=b^2(b-2a) \). Aratati ca \( a=b \).
Claudiu Mindrila, G.M.-B. 10/2007
elev, clasa a X-a, C. N. "C-tin Carabella", Targoviste
Marius Mainea
Gauss
Posts: 1077
Joined: Mon May 26, 2008 2:12 pm
Location: Gaesti (Dambovita)

Post by Marius Mainea »

Relatia este echivalenta cu \( (a-b)(a^2-ab+b^2)=0 \)

1) Daca a=0 atunci b=0 deci a=b.

2) daca \( a\neq 0 \) atunci a doua paranteza este nenula deci a-b=0
User avatar
BurnerD1
Euclid
Posts: 31
Joined: Tue Mar 03, 2009 11:36 am
Location: Acasa

Post by BurnerD1 »

Dupa inmultire se ajunge la \( a^3 - 2a^{2}b = b^3 - 2ab^2 \ \ \ \)
deci \(
a^3 - b^3 = 2a^{2}b - 2ab^2 \)

dupa cum stim \( a^n - b^n = (a-b)\cdot (a^{n-1} + a^{n-2}b + a^{n-3}b^3 + ... + ab^{n-2} + b^{n-1}) \)
deci \( a^3 - b^3 =(a-b)(a^2 + ab + b^2) \)
vom obtine \( (a-b)(a^2 + ab + b^2)= 2a^2b - 2ab^2 \)

Imi explica si mie cineva de unde putem sti ca \( 2a^b - 2ab^2 = 0 \) nestiind ca \( a=b=0 \)
Ce sa-i faci ....
User avatar
BogdanCNFB
Thales
Posts: 121
Joined: Wed May 07, 2008 4:29 pm
Location: Craiova

Post by BogdanCNFB »

pai \( (a-b)(a^2ab+b^2)=2a^2b-2ab^2\Leftrightarrow (a-b)(a^2+ab+b^2)=2ab(a-b)\Leftrightarrow (a-b)(a^2+ab+b^2-2ab)=0\Leftrightarrow (a-b)(a^2-ab+b^2)=0... \)
User avatar
BurnerD1
Euclid
Posts: 31
Joined: Tue Mar 03, 2009 11:36 am
Location: Acasa

Post by BurnerD1 »

corect... :D
Ce sa-i faci ....
Post Reply

Return to “Clasa a VIII-a”