Fie \( a,b\in \mathbb{R} \) astfel incat \( a^2(a-2b)=b^2(b-2a) \). Aratati ca \( a=b \).
Claudiu Mindrila, G.M.-B. 10/2007
Egalitate
Moderators: Bogdan Posa, Laurian Filip
-
Claudiu Mindrila
- Fermat
- Posts: 520
- Joined: Mon Oct 01, 2007 2:25 pm
- Location: Targoviste
- Contact:
Egalitate
elev, clasa a X-a, C. N. "C-tin Carabella", Targoviste
-
Marius Mainea
- Gauss
- Posts: 1077
- Joined: Mon May 26, 2008 2:12 pm
- Location: Gaesti (Dambovita)
Dupa inmultire se ajunge la \( a^3 - 2a^{2}b = b^3 - 2ab^2 \ \ \ \)
deci \(
a^3 - b^3 = 2a^{2}b - 2ab^2 \)
dupa cum stim \( a^n - b^n = (a-b)\cdot (a^{n-1} + a^{n-2}b + a^{n-3}b^3 + ... + ab^{n-2} + b^{n-1}) \)
deci \( a^3 - b^3 =(a-b)(a^2 + ab + b^2) \)
vom obtine \( (a-b)(a^2 + ab + b^2)= 2a^2b - 2ab^2 \)
Imi explica si mie cineva de unde putem sti ca \( 2a^b - 2ab^2 = 0 \) nestiind ca \( a=b=0 \)
deci \(
a^3 - b^3 = 2a^{2}b - 2ab^2 \)
dupa cum stim \( a^n - b^n = (a-b)\cdot (a^{n-1} + a^{n-2}b + a^{n-3}b^3 + ... + ab^{n-2} + b^{n-1}) \)
deci \( a^3 - b^3 =(a-b)(a^2 + ab + b^2) \)
vom obtine \( (a-b)(a^2 + ab + b^2)= 2a^2b - 2ab^2 \)
Imi explica si mie cineva de unde putem sti ca \( 2a^b - 2ab^2 = 0 \) nestiind ca \( a=b=0 \)
Ce sa-i faci ....
- BogdanCNFB
- Thales
- Posts: 121
- Joined: Wed May 07, 2008 4:29 pm
- Location: Craiova