Sa se rezolve ecuatia:
\( 2^{x-1}+2^{\frac{1}{\sqrt{x}}}=3. \)
Marius Cavachi, G.M. 1988
Ecuatie exponentiala simpla
Moderators: Filip Chindea, Andrei Velicu, Radu Titiu
- Cezar Lupu
- Site Admin
- Posts: 612
- Joined: Wed Sep 26, 2007 2:04 pm
- Location: Bucuresti sau Constanta
- Contact:
Ecuatie exponentiala simpla
An infinite number of mathematicians walk into a bar. The first one orders a beer. The second orders half a beer. The third, a quarter of a beer. The bartender says “You’re all idiots”, and pours two beers.
- Mateescu Constantin
- Newton
- Posts: 307
- Joined: Tue Apr 21, 2009 8:17 am
- Location: Pitesti
Conditia de existenta impune \( x>0 \).
Inmultind cu \( 2 \) egalitatea obtinem \( 2^x+2\cdot 2^{\frac{1}{\sqrt x}}=6. \)
Dar din \( AM-GM \) avem \( 2^x+2\cdot 2^{\frac{1}{sqrt x}}\ \ge\ 3\sqrt[3]{2^x\cdot 2^{\frac{1}{\sqrt x}}\cdot 2^{\frac{1}{\sqrt x}}}=3\sqrt[3]{2^{x+\frac{2}{\sqrt x}}}\ \ge\ 3\sqrt[3]{2^3}=6 \), cu egalitate cand \( x=\frac{1}{\sqrt x} \), adica pentru \( x=1 \).
Fiind chiar in cazul de egalitate rezulta ca \( x=1 \) este solutie unica.
Inmultind cu \( 2 \) egalitatea obtinem \( 2^x+2\cdot 2^{\frac{1}{\sqrt x}}=6. \)
Dar din \( AM-GM \) avem \( 2^x+2\cdot 2^{\frac{1}{sqrt x}}\ \ge\ 3\sqrt[3]{2^x\cdot 2^{\frac{1}{\sqrt x}}\cdot 2^{\frac{1}{\sqrt x}}}=3\sqrt[3]{2^{x+\frac{2}{\sqrt x}}}\ \ge\ 3\sqrt[3]{2^3}=6 \), cu egalitate cand \( x=\frac{1}{\sqrt x} \), adica pentru \( x=1 \).
Fiind chiar in cazul de egalitate rezulta ca \( x=1 \) este solutie unica.
- DrAGos Calinescu
- Thales
- Posts: 121
- Joined: Sun Dec 07, 2008 10:00 pm
- Location: Pitesti