Ecuatie exponentiala simpla

Moderators: Filip Chindea, Andrei Velicu, Radu Titiu

Post Reply
User avatar
Cezar Lupu
Site Admin
Posts: 612
Joined: Wed Sep 26, 2007 2:04 pm
Location: Bucuresti sau Constanta
Contact:

Ecuatie exponentiala simpla

Post by Cezar Lupu »

Sa se rezolve ecuatia:

\( 2^{x-1}+2^{\frac{1}{\sqrt{x}}}=3. \)

Marius Cavachi, G.M. 1988
An infinite number of mathematicians walk into a bar. The first one orders a beer. The second orders half a beer. The third, a quarter of a beer. The bartender says “You’re all idiots”, and pours two beers.
User avatar
Mateescu Constantin
Newton
Posts: 307
Joined: Tue Apr 21, 2009 8:17 am
Location: Pitesti

Post by Mateescu Constantin »

Conditia de existenta impune \( x>0 \).

Inmultind cu \( 2 \) egalitatea obtinem \( 2^x+2\cdot 2^{\frac{1}{\sqrt x}}=6. \)

Dar din \( AM-GM \) avem \( 2^x+2\cdot 2^{\frac{1}{sqrt x}}\ \ge\ 3\sqrt[3]{2^x\cdot 2^{\frac{1}{\sqrt x}}\cdot 2^{\frac{1}{\sqrt x}}}=3\sqrt[3]{2^{x+\frac{2}{\sqrt x}}}\ \ge\ 3\sqrt[3]{2^3}=6 \), cu egalitate cand \( x=\frac{1}{\sqrt x} \), adica pentru \( x=1 \).

Fiind chiar in cazul de egalitate rezulta ca \( x=1 \) este solutie unica.
User avatar
DrAGos Calinescu
Thales
Posts: 121
Joined: Sun Dec 07, 2008 10:00 pm
Location: Pitesti

Post by DrAGos Calinescu »

Un exercitiu aproape identic s-a dat la concursul argesean "Dan Barbilian" 2008.

Sa se rezolve ecuatia:
\( 3^{x-1}+3^{\frac{1}{\sqrt[3]{x}}} = 4 \)
Post Reply

Return to “Clasa a X-a”