Internet Olympiad Problema 6

Moderators: Bogdan Posa, Laurian Filip, Beniamin Bogosel, Radu Titiu, Marius Dragoi

Post Reply
User avatar
Beniamin Bogosel
Co-admin
Posts: 710
Joined: Fri Mar 07, 2008 12:01 am
Location: Timisoara sau Sofronea (Arad)
Contact:

Internet Olympiad Problema 6

Post by Beniamin Bogosel »

Pentru ce numere \( \lambda \in (0,1) \) putem afirma cu siguranta ca pentru orice functie continua \( f: [0,1] \to \mathbb{R} \) cu \( f(0)=f(1)=0 \) exista \( x \in [0,1] \) cu \( f(x)=f(x+\lambda) \)?

Internet Olympiad, Ariel University, Samaria, Israel
Yesterday is history,
Tomorow is a mistery,
But today is a gift.
That's why it's called present. :)

Blog
Marius Mainea
Gauss
Posts: 1077
Joined: Mon May 26, 2008 2:12 pm
Location: Gaesti (Dambovita)

Post by Marius Mainea »

\( \lambda=\frac{1}{2} \)
enescu
Pitagora
Posts: 60
Joined: Tue May 20, 2008 10:08 pm

Post by enescu »

\( \lambda =\frac 1n \), cu \( n \) natural nenul. A se vedea "Probleme neelementare tratate elementar" de A.M. Iaglom si I.M. Iaglom, Ed. Tehnica, 1983. (Pagina 42, cu titlul "O proprietate a inverselor numerelor intregi".)
Bogdan Enescu
turcas
Pitagora
Posts: 83
Joined: Fri Sep 28, 2007 1:48 pm
Location: Cluj-Napoca
Contact:

Post by turcas »

Poate cineva sa posteze o solutie aici?

Va multumesc in numele celor care nu au cartea :D
Last edited by turcas on Thu Mar 12, 2009 12:26 am, edited 1 time in total.
enescu
Pitagora
Posts: 60
Joined: Tue May 20, 2008 10:08 pm

Post by enescu »

Bogdan Enescu
User avatar
Beniamin Bogosel
Co-admin
Posts: 710
Joined: Fri Mar 07, 2008 12:01 am
Location: Timisoara sau Sofronea (Arad)
Contact:

Post by Beniamin Bogosel »

Aici sunt problemele si solutiile oficiale. :)
Yesterday is history,
Tomorow is a mistery,
But today is a gift.
That's why it's called present. :)

Blog
Post Reply

Return to “Analiza matematica”