Pentru ce numere \( \lambda \in (0,1) \) putem afirma cu siguranta ca pentru orice functie continua \( f: [0,1] \to \mathbb{R} \) cu \( f(0)=f(1)=0 \) exista \( x \in [0,1] \) cu \( f(x)=f(x+\lambda) \)?
Internet Olympiad, Ariel University, Samaria, Israel
Internet Olympiad Problema 6
Moderators: Bogdan Posa, Laurian Filip, Beniamin Bogosel, Radu Titiu, Marius Dragoi
- Beniamin Bogosel
- Co-admin
- Posts: 710
- Joined: Fri Mar 07, 2008 12:01 am
- Location: Timisoara sau Sofronea (Arad)
- Contact:
Internet Olympiad Problema 6
Yesterday is history,
Tomorow is a mistery,
But today is a gift.
That's why it's called present.
Blog
Tomorow is a mistery,
But today is a gift.
That's why it's called present.
Blog
-
Marius Mainea
- Gauss
- Posts: 1077
- Joined: Mon May 26, 2008 2:12 pm
- Location: Gaesti (Dambovita)
Poate cineva sa posteze o solutie aici?
Va multumesc in numele celor care nu au cartea
Va multumesc in numele celor care nu au cartea
Last edited by turcas on Thu Mar 12, 2009 12:26 am, edited 1 time in total.
Totusi, cartea se gaseste http://www.librarie.net/cautare-carti-r ... ategorie=0
E o carte exceptionala!
Edit: aici http://www.cartile.ro/popup.php?id=14099
E o carte exceptionala!
Edit: aici http://www.cartile.ro/popup.php?id=14099
Bogdan Enescu
- Beniamin Bogosel
- Co-admin
- Posts: 710
- Joined: Fri Mar 07, 2008 12:01 am
- Location: Timisoara sau Sofronea (Arad)
- Contact: