Ecuatie in numere naturale

Moderators: Bogdan Posa, Laurian Filip

Post Reply
User avatar
Andi Brojbeanu
Bernoulli
Posts: 294
Joined: Sun Mar 22, 2009 6:31 pm
Location: Targoviste (Dambovita)

Ecuatie in numere naturale

Post by Andi Brojbeanu »

Sa se arate ca pentru orice n\( \geq \)3, ecuatia \( \frac{1}{x_{1} \)+\( \frac{1}{x_{2} \)+.......+\( \frac{1}{x_{n} \)=1 are solutii numere naturale distincte.
Antonache Emanuel
Euclid
Posts: 37
Joined: Sat Feb 28, 2009 4:15 pm
Location: Targoviste, Dambovita

Re: Ecuatie in numere naturale

Post by Antonache Emanuel »

Luam \( \frac{1}{x_{1} \)+\( \frac{1}{x_{2} \)+.......+\( \frac{1}{x_{n} \)=1 cu \( {x_{1}<{x_{2}<...<{x_{n} \). Observam pentru inceput, pentru n=3, ca \( \frac{1}{2}+\frac{1}{3}+\frac{1}{6}=1 \), atunci \( \frac{1}{2}+\frac{1}{2}(\frac{1}{2}+\frac{1}{3}+\frac{1}{6})=\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+\frac{1}{12}=1 \) (deoarece \( \frac{1}{2}+\frac{1}{2}=1) \), iar apoi \( \frac{1}{2}+\frac{1}{2}(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+\frac{1}{12})=\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{12}+\frac{1}{24}=1 \) si continuam asa pana la infinit, observand ca numarul termenilor creste cu o unitate la fiecare transformare, deci afirmatia este adevarata.
Post Reply

Return to “Clasa a VIII-a”