Inegalitate trigonometrica

Moderators: Laurian Filip, Beniamin Bogosel, Filip Chindea

Post Reply
User avatar
Mateescu Constantin
Newton
Posts: 307
Joined: Tue Apr 21, 2009 8:17 am
Location: Pitesti

Inegalitate trigonometrica

Post by Mateescu Constantin »

Sa se arate ca in \( \triangle ABC \) are loc inegalitatea:

\( \sin^{3}A+\sin^{3}B+\sin^{3}C< 2. \)
User avatar
BogdanCNFB
Thales
Posts: 121
Joined: Wed May 07, 2008 4:29 pm
Location: Craiova

Post by BogdanCNFB »

Din faptul ca \( f(x)=\sin^3 x \) este concava pe \( ( 0,\pi ) \) \( \Rightarrow \sin^3 A+\sin^3 B+sin^3 C\le 3\cdot\sin^3 (\frac{A+B+C}{3})=3\cdot\sin^3 \frac{\pi}{3}=3\cdot \frac{3\sqrt{3}}{8}=\frac{9\sqrt{3}}{8}<2. \)
Marius Mainea
Gauss
Posts: 1077
Joined: Mon May 26, 2008 2:12 pm
Location: Gaesti (Dambovita)

Post by Marius Mainea »

BogdanCNFB wrote:Din faptul ca \( f(x)=\sin^3 x \) este concava pe \( ( 0,\pi ) \)
\( f^{\prime\prime}(x)=3\sin x(2\cos^2x-\sin^2x) \), deci f nu e concava pe \( (0,\pi) \).
Last edited by Marius Mainea on Sun May 03, 2009 12:38 pm, edited 1 time in total.
Post Reply

Return to “Clasa a IX-a”