Sa se arate ca in \( \triangle ABC \) are loc inegalitatea:
\( \sin^{3}A+\sin^{3}B+\sin^{3}C< 2. \)
Inegalitate trigonometrica
Moderators: Laurian Filip, Beniamin Bogosel, Filip Chindea
- Mateescu Constantin
- Newton
- Posts: 307
- Joined: Tue Apr 21, 2009 8:17 am
- Location: Pitesti
- BogdanCNFB
- Thales
- Posts: 121
- Joined: Wed May 07, 2008 4:29 pm
- Location: Craiova
-
Marius Mainea
- Gauss
- Posts: 1077
- Joined: Mon May 26, 2008 2:12 pm
- Location: Gaesti (Dambovita)
\( f^{\prime\prime}(x)=3\sin x(2\cos^2x-\sin^2x) \), deci f nu e concava pe \( (0,\pi) \).BogdanCNFB wrote:Din faptul ca \( f(x)=\sin^3 x \) este concava pe \( ( 0,\pi ) \)
Last edited by Marius Mainea on Sun May 03, 2009 12:38 pm, edited 1 time in total.