Inegalitate conditionata

Moderators: Laurian Filip, Beniamin Bogosel, Filip Chindea

Post Reply
opincariumihai
Thales
Posts: 134
Joined: Sat May 09, 2009 7:45 pm
Location: BRAD

Inegalitate conditionata

Post by opincariumihai »

Daca \( a,b,c \) sunt pozitive si \( a+b+c=1 \), aratati ca \( \frac{a^3}{a^2+b^2}+\frac{b^3}{b^2+c^2}+\frac{c^3}{c^2+a^2}\geq\frac{1}{2} \)

Mihai Opincariu
Marius Mainea
Gauss
Posts: 1077
Joined: Mon May 26, 2008 2:12 pm
Location: Gaesti (Dambovita)

Post by Marius Mainea »

\( LHS=\sum a-\sum\frac{ab^2}{a^2+b^2}\ge RHS \) folosind AM-GM

P.S. Se poate arata ca :

\( \frac{a^4}{a^3+b^3}+\frac{b^4}{b^3+c^3}+\frac{c^4}{c^3+a^3}\ge\frac{a+b+c}{2} \)
Last edited by Marius Mainea on Sat May 23, 2009 7:51 pm, edited 1 time in total.
opincariumihai
Thales
Posts: 134
Joined: Sat May 09, 2009 7:45 pm
Location: BRAD

Post by opincariumihai »

Felicitari pt. rapiditatea cu care rezolvi pb.

Mai "smechereste" se redacteaza asa :
Demonstram ca \( \frac{a^3}{a^2+b^2}\geq\frac{2a-b}{2} \) si analoagele care insumate duc la concluzie.
Post Reply

Return to “Clasa a IX-a”