Daca \( a,b,c \) sunt pozitive si \( a+b+c=1 \), aratati ca \( \frac{a^3}{a^2+b^2}+\frac{b^3}{b^2+c^2}+\frac{c^3}{c^2+a^2}\geq\frac{1}{2} \)
Mihai Opincariu
Inegalitate conditionata
Moderators: Laurian Filip, Beniamin Bogosel, Filip Chindea
-
opincariumihai
- Thales
- Posts: 134
- Joined: Sat May 09, 2009 7:45 pm
- Location: BRAD
-
Marius Mainea
- Gauss
- Posts: 1077
- Joined: Mon May 26, 2008 2:12 pm
- Location: Gaesti (Dambovita)
\( LHS=\sum a-\sum\frac{ab^2}{a^2+b^2}\ge RHS \) folosind AM-GM
P.S. Se poate arata ca :
\( \frac{a^4}{a^3+b^3}+\frac{b^4}{b^3+c^3}+\frac{c^4}{c^3+a^3}\ge\frac{a+b+c}{2} \)
P.S. Se poate arata ca :
\( \frac{a^4}{a^3+b^3}+\frac{b^4}{b^3+c^3}+\frac{c^4}{c^3+a^3}\ge\frac{a+b+c}{2} \)
Last edited by Marius Mainea on Sat May 23, 2009 7:51 pm, edited 1 time in total.
-
opincariumihai
- Thales
- Posts: 134
- Joined: Sat May 09, 2009 7:45 pm
- Location: BRAD