Fie \( ABCD \) un patrulater convex cu \( \angle{BCD}=120\textdegree, \angle{CBA}=45\textdegree, \angle{CBD}=15\textdegree \) si \( \angle{CAB}=90\textdegree \). Sa se arate ca \( AB=AD \).
Anghel Costel
JBTST I 2010, Problema 2
Moderators: Laurian Filip, Filip Chindea, maky, Cosmin Pohoata, Virgil Nicula
- Andi Brojbeanu
- Bernoulli
- Posts: 294
- Joined: Sun Mar 22, 2009 6:31 pm
- Location: Targoviste (Dambovita)
JBTST I 2010, Problema 2
Last edited by Andi Brojbeanu on Mon Apr 26, 2010 3:54 pm, edited 1 time in total.
Andi Brojbeanu
profesor, Liceul Teoretic "Lucian Blaga", Cluj-Napoca
profesor, Liceul Teoretic "Lucian Blaga", Cluj-Napoca
- Beniamin Bogosel
- Co-admin
- Posts: 710
- Joined: Fri Mar 07, 2008 12:01 am
- Location: Timisoara sau Sofronea (Arad)
- Contact:
\( AB=AC \) si \( \angle BAC=2 \angle BDC \) implica faptul ca \( A \) este centrul cercului circumscris triunghiului \( BDC \).
Yesterday is history,
Tomorow is a mistery,
But today is a gift.
That's why it's called present.
Blog
Tomorow is a mistery,
But today is a gift.
That's why it's called present.
Blog