JBTST I 2010, Problema 2

Moderators: Laurian Filip, Filip Chindea, maky, Cosmin Pohoata, Virgil Nicula

Post Reply
User avatar
Andi Brojbeanu
Bernoulli
Posts: 294
Joined: Sun Mar 22, 2009 6:31 pm
Location: Targoviste (Dambovita)

JBTST I 2010, Problema 2

Post by Andi Brojbeanu »

Fie \( ABCD \) un patrulater convex cu \( \angle{BCD}=120\textdegree, \angle{CBA}=45\textdegree, \angle{CBD}=15\textdegree \) si \( \angle{CAB}=90\textdegree \). Sa se arate ca \( AB=AD \).
Anghel Costel
Last edited by Andi Brojbeanu on Mon Apr 26, 2010 3:54 pm, edited 1 time in total.
Andi Brojbeanu
profesor, Liceul Teoretic "Lucian Blaga", Cluj-Napoca
User avatar
Beniamin Bogosel
Co-admin
Posts: 710
Joined: Fri Mar 07, 2008 12:01 am
Location: Timisoara sau Sofronea (Arad)
Contact:

Post by Beniamin Bogosel »

\( AB=AC \) si \( \angle BAC=2 \angle BDC \) implica faptul ca \( A \) este centrul cercului circumscris triunghiului \( BDC \).
Yesterday is history,
Tomorow is a mistery,
But today is a gift.
That's why it's called present. :)

Blog
Post Reply

Return to “Geometrie”