Iata o limita dragutza care poate fi facuta si cu instrumente de clasa 11-a.
Sa se calculeze \( \lim_{n\to\infty} n\left(ln2-\sum_{k=1}^{n}\frac{1}{n+k}\right) \).
O limita care poate fi facuta si la nivel de clasa a 11-a
Moderators: Bogdan Posa, Beniamin Bogosel, Marius Dragoi
- Cezar Lupu
- Site Admin
- Posts: 612
- Joined: Wed Sep 26, 2007 2:04 pm
- Location: Bucuresti sau Constanta
- Contact:
O limita care poate fi facuta si la nivel de clasa a 11-a
An infinite number of mathematicians walk into a bar. The first one orders a beer. The second orders half a beer. The third, a quarter of a beer. The bartender says “You’re all idiots”, and pours two beers.
- Doru Popovici
- Euclid
- Posts: 17
- Joined: Thu Sep 27, 2007 8:50 pm
- Location: Home
ca si intrebare?
1. Se poate calcula cu regula clestelui daca e vb de clasa a XI-a la partea cu suma.
2. Se folosesc sumele Riemann si se ajunge usor la rezultatul cautat.
2. Se folosesc sumele Riemann si se ajunge usor la rezultatul cautat.
- Radu Titiu
- Thales
- Posts: 155
- Joined: Fri Sep 28, 2007 5:05 pm
- Location: Mures \Bucuresti
Fie \( a_{n}=\ln(2)-\sum _{k=1}^n \frac{1}{n+k} \)
si \( b_{n}=\frac{1}{n}
\) e clar ca \( b_{n} \rightarrow 0 \) descrescator , iar \( a_{n}\rightarrow 0 \)
Din lema Slotz-Cesaro pt cazul 0/0 avem :
\( \lim_{n}\frac{a_{n}}{b_{n}}=\lim_{n}\frac{a_{n}-a_{n+1}}{b_{n}-b_{n+1}}=\lim \frac{\frac{1}{2n+1}+\frac{1}{2(n+1)}-\frac{1}{n+1}}{\frac{1}{n(n+1)}}=\frac{1}{4} \)
si \( b_{n}=\frac{1}{n}
\) e clar ca \( b_{n} \rightarrow 0 \) descrescator , iar \( a_{n}\rightarrow 0 \)
Din lema Slotz-Cesaro pt cazul 0/0 avem :
\( \lim_{n}\frac{a_{n}}{b_{n}}=\lim_{n}\frac{a_{n}-a_{n+1}}{b_{n}-b_{n+1}}=\lim \frac{\frac{1}{2n+1}+\frac{1}{2(n+1)}-\frac{1}{n+1}}{\frac{1}{n(n+1)}}=\frac{1}{4} \)
A mathematician is a machine for turning coffee into theorems.