O limita care poate fi facuta si la nivel de clasa a 11-a

Moderators: Bogdan Posa, Beniamin Bogosel, Marius Dragoi

Post Reply
User avatar
Cezar Lupu
Site Admin
Posts: 612
Joined: Wed Sep 26, 2007 2:04 pm
Location: Bucuresti sau Constanta
Contact:

O limita care poate fi facuta si la nivel de clasa a 11-a

Post by Cezar Lupu »

Iata o limita dragutza care poate fi facuta si cu instrumente de clasa 11-a.

Sa se calculeze \( \lim_{n\to\infty} n\left(ln2-\sum_{k=1}^{n}\frac{1}{n+k}\right) \).
An infinite number of mathematicians walk into a bar. The first one orders a beer. The second orders half a beer. The third, a quarter of a beer. The bartender says “You’re all idiots”, and pours two beers.
User avatar
Doru Popovici
Euclid
Posts: 17
Joined: Thu Sep 27, 2007 8:50 pm
Location: Home

ca si intrebare?

Post by Doru Popovici »

1. Se poate calcula cu regula clestelui daca e vb de clasa a XI-a la partea cu suma.
2. Se folosesc sumele Riemann si se ajunge usor la rezultatul cautat.
User avatar
Radu Titiu
Thales
Posts: 155
Joined: Fri Sep 28, 2007 5:05 pm
Location: Mures \Bucuresti

Post by Radu Titiu »

Fie \( a_{n}=\ln(2)-\sum _{k=1}^n \frac{1}{n+k} \)
si \( b_{n}=\frac{1}{n}
\)
e clar ca \( b_{n} \rightarrow 0 \) descrescator , iar \( a_{n}\rightarrow 0 \)

Din lema Slotz-Cesaro pt cazul 0/0 avem :
\( \lim_{n}\frac{a_{n}}{b_{n}}=\lim_{n}\frac{a_{n}-a_{n+1}}{b_{n}-b_{n+1}}=\lim \frac{\frac{1}{2n+1}+\frac{1}{2(n+1)}-\frac{1}{n+1}}{\frac{1}{n(n+1)}}=\frac{1}{4} \)
A mathematician is a machine for turning coffee into theorems.
Post Reply

Return to “Analiza matematica”