Geometrie cu vectori intr-un pentagon

Moderators: Laurian Filip, Beniamin Bogosel, Filip Chindea

Post Reply
User avatar
Filip Chindea
Newton
Posts: 324
Joined: Thu Sep 27, 2007 9:01 pm
Location: Bucharest

Geometrie cu vectori intr-un pentagon

Post by Filip Chindea »

Fie \( ABCDE \) un pentagon inscriptibil si \( H_{1,2,3,4} \) ortocentrele \( \triangle ABC \), \( \triangle BCD \), \( \triangle CDE \), respectiv \( \triangle ACE \). Demonstrati ca \( H_1H_2H_3H_4 \) este paralelogram.
Life is complex: it has real and imaginary components.
Razvan Balan
Euclid
Posts: 16
Joined: Tue Feb 19, 2008 10:10 pm

Post by Razvan Balan »

Problema iese imediat:
\( $\vec{H_4H_1}=\vec{OH_1}-\vec{OH_4} = \vec{OB} - \vec{OE}$ \) si \( $\vec{H_3H_2}=\vec{OH_2} - \vec{OH_3}=\vec{OB}-\vec{OE}=\vec{H_4H_1}$ \) si deci \( $H_1H_2H_3H_4$ \) este paralelogram.
Post Reply

Return to “Clasa a IX-a”