Daca \( K \) este un corp cu \( p^{n} \) elemente, \( p \) numar prim, \( n \in \mathbb{N}^{*} \), atunci polinomul \( f=X^{p^{n-1}}+X^{p^{n-2}}+...+X^{p}+X \in K[X] \) admite \( p^{n-1} \) radacini distincte in corpul \( K \).
Ioan Baetu, GM 5/2007
Radacinile unui polinom cu coeficienti intr-un corp finit
Moderators: Bogdan Posa, Beniamin Bogosel, Marius Dragoi
- bogdanl_yex
- Pitagora
- Posts: 91
- Joined: Thu Jan 31, 2008 9:58 pm
- Location: Bucuresti
Radacinile unui polinom cu coeficienti intr-un corp finit
"Don't worry about your difficulties in mathematics; I can assure you that mine are still greater"(Albert Einstein)