Macedonia, 1995

Moderators: Bogdan Posa, Laurian Filip

Post Reply
Claudiu Mindrila
Fermat
Posts: 520
Joined: Mon Oct 01, 2007 2:25 pm
Location: Targoviste
Contact:

Macedonia, 1995

Post by Claudiu Mindrila »

Aratati ca daca \( a,b,c \in (0, +\infty) \) , atunci \( \Sigma \sqrt{\frac{a}{b+c}} \geq 2 \).
elev, clasa a X-a, C. N. "C-tin Carabella", Targoviste
Ahiles
Euclid
Posts: 28
Joined: Thu Apr 17, 2008 4:26 pm

Post by Ahiles »

Din \( AM-GM \) avem:
\( x+y+z\ge 2\sqrt{x}\cdot\sqrt{y+z} \)
\( \sqrt{\frac{x}{y+z}}=\frac{x}{\sqrt{x}\cdot \sqrt{y+z}}\ge \frac{x}{\frac{x+y+z}{2}}=\frac{2x}{x+y+z} \)
Prin adunare obtinem:
\( \sum \sqrt{\frac{x}{y+z}}\ge \sum \frac{2x}{z+y+z}=2 \)

cu egalitate numai pentru \( (0;1;1) \)
Last edited by Ahiles on Tue May 27, 2008 8:30 pm, edited 3 times in total.
User avatar
Filip Chindea
Newton
Posts: 324
Joined: Thu Sep 27, 2007 9:01 pm
Location: Bucharest

Post by Filip Chindea »

Ai propus problema cu "mai mare sau egal". Imi poti indica un singur caz de egalitate? In general, o astfel de formulare nu este "fair-play": daca se poate, spuneti totul despre problema, inclusiv faptul ca acel \( 2 \) nu poate fi imbunatatit.

PS. Vedeti si aici.
Life is complex: it has real and imaginary components.
User avatar
BogdanCNFB
Thales
Posts: 121
Joined: Wed May 07, 2008 4:29 pm
Location: Craiova

Post by BogdanCNFB »

Avem \( M_G\ge M_H \)
Rezulta ca \( \sqrt{\frac{a}{b+c}}=\sqrt{1\cdot\frac{a}{b+c}}\ge\frac{2}{1+\frac{b+c}{a}}=\frac{2a}{a+b+c} \)
Analog, \( \sqrt{\frac{b}{a+c}}\ge\frac{2b}{a+b+c} \) si \( \sqrt{\frac{c}{a+b}}\ge\frac{2c}{a+b+c} \)
Prin insumare rezulta concluzia.
Post Reply

Return to “Clasa a VIII-a”