Macedonia, 1995
Moderators: Bogdan Posa, Laurian Filip
-
Claudiu Mindrila
- Fermat
- Posts: 520
- Joined: Mon Oct 01, 2007 2:25 pm
- Location: Targoviste
- Contact:
Macedonia, 1995
Aratati ca daca \( a,b,c \in (0, +\infty) \) , atunci \( \Sigma \sqrt{\frac{a}{b+c}} \geq 2 \).
elev, clasa a X-a, C. N. "C-tin Carabella", Targoviste
Din \( AM-GM \) avem:
\( x+y+z\ge 2\sqrt{x}\cdot\sqrt{y+z} \)
\( \sqrt{\frac{x}{y+z}}=\frac{x}{\sqrt{x}\cdot \sqrt{y+z}}\ge \frac{x}{\frac{x+y+z}{2}}=\frac{2x}{x+y+z} \)
Prin adunare obtinem:
\( \sum \sqrt{\frac{x}{y+z}}\ge \sum \frac{2x}{z+y+z}=2 \)
cu egalitate numai pentru \( (0;1;1) \)
\( x+y+z\ge 2\sqrt{x}\cdot\sqrt{y+z} \)
\( \sqrt{\frac{x}{y+z}}=\frac{x}{\sqrt{x}\cdot \sqrt{y+z}}\ge \frac{x}{\frac{x+y+z}{2}}=\frac{2x}{x+y+z} \)
Prin adunare obtinem:
\( \sum \sqrt{\frac{x}{y+z}}\ge \sum \frac{2x}{z+y+z}=2 \)
cu egalitate numai pentru \( (0;1;1) \)
Last edited by Ahiles on Tue May 27, 2008 8:30 pm, edited 3 times in total.
- Filip Chindea
- Newton
- Posts: 324
- Joined: Thu Sep 27, 2007 9:01 pm
- Location: Bucharest
Ai propus problema cu "mai mare sau egal". Imi poti indica un singur caz de egalitate? In general, o astfel de formulare nu este "fair-play": daca se poate, spuneti totul despre problema, inclusiv faptul ca acel \( 2 \) nu poate fi imbunatatit.
PS. Vedeti si aici.
PS. Vedeti si aici.
Life is complex: it has real and imaginary components.
- BogdanCNFB
- Thales
- Posts: 121
- Joined: Wed May 07, 2008 4:29 pm
- Location: Craiova