Fie \( a,b,c\in[-3,\infty) \) astfel incat \( a^3+b^3+c^3=0 \). Aratati ca \( a+b+c\le 3 \).
Poate avea loc egalitatea?
Inegalitate atipica 1
Moderators: Bogdan Posa, Laurian Filip
-
Marius Mainea
- Gauss
- Posts: 1077
- Joined: Mon May 26, 2008 2:12 pm
- Location: Gaesti (Dambovita)
-
Claudiu Mindrila
- Fermat
- Posts: 520
- Joined: Mon Oct 01, 2007 2:25 pm
- Location: Targoviste
- Contact:
Sa remarcam ca \( a^2+\frac{9}{4} \geq 3a \Rightarrow a^2-3a+\frac{9}{4} \geq 0 \). Deducem ca \( (a-3)(a^2-3a+\frac{9}{4}) \geq 0 \Leftrightarrow a^3+\frac{81}{4} \geq \frac{27}{4}a \). Prin sumarea inegalitatilor analoage avem ca: \( \sum a^3+\frac{243}{4}\geq \frac{21}{4} \sum a \), adica
\( \sum a \leq \frac{243}{4} \cdot \frac{4}{81}=3 \), ceea ce trebuia aratat.
\( \sum a \leq \frac{243}{4} \cdot \frac{4}{81}=3 \), ceea ce trebuia aratat.
elev, clasa a X-a, C. N. "C-tin Carabella", Targoviste