Inegalitate atipica 1

Moderators: Bogdan Posa, Laurian Filip

Post Reply
Marius Mainea
Gauss
Posts: 1077
Joined: Mon May 26, 2008 2:12 pm
Location: Gaesti (Dambovita)

Inegalitate atipica 1

Post by Marius Mainea »

Fie \( a,b,c\in[-3,\infty) \) astfel incat \( a^3+b^3+c^3=0 \). Aratati ca \( a+b+c\le 3 \).

Poate avea loc egalitatea?
Claudiu Mindrila
Fermat
Posts: 520
Joined: Mon Oct 01, 2007 2:25 pm
Location: Targoviste
Contact:

Post by Claudiu Mindrila »

Sa remarcam ca \( a^2+\frac{9}{4} \geq 3a \Rightarrow a^2-3a+\frac{9}{4} \geq 0 \). Deducem ca \( (a-3)(a^2-3a+\frac{9}{4}) \geq 0 \Leftrightarrow a^3+\frac{81}{4} \geq \frac{27}{4}a \). Prin sumarea inegalitatilor analoage avem ca: \( \sum a^3+\frac{243}{4}\geq \frac{21}{4} \sum a \), adica
\( \sum a \leq \frac{243}{4} \cdot \frac{4}{81}=3 \), ceea ce trebuia aratat.
elev, clasa a X-a, C. N. "C-tin Carabella", Targoviste
Post Reply

Return to “Clasa a VIII-a”