Sa se arate ca pentru orice numere reale strict pozitive \( a,b,c \) are loc inegalitatea: \( \frac{a^3}{b}+\frac{b^3}{c}+\frac{c^3}{a} \geq \frac{(a+b+c)^2}{3} \).
Nicolae Papacu, Concursul revistei Arhimede 2008, faza a 2-a
Inegalitate de la concursul Arhimede
Moderators: Laurian Filip, Beniamin Bogosel, Filip Chindea
-
Claudiu Mindrila
- Fermat
- Posts: 520
- Joined: Mon Oct 01, 2007 2:25 pm
- Location: Targoviste
- Contact:
Inegalitate de la concursul Arhimede
elev, clasa a X-a, C. N. "C-tin Carabella", Targoviste
- Beniamin Bogosel
- Co-admin
- Posts: 710
- Joined: Fri Mar 07, 2008 12:01 am
- Location: Timisoara sau Sofronea (Arad)
- Contact:
Cam simpluta...
Tripletele \( (a^3,b^3,c^3) \) si \( (\frac{1}{a},\frac{1}{b},\frac{1}{c}) \) atunci din Cebasev rezulta \( LHS \geq a^2+b^2+c^2\geq \frac{(a+b+c)^2}{3} \).
Tripletele \( (a^3,b^3,c^3) \) si \( (\frac{1}{a},\frac{1}{b},\frac{1}{c}) \) atunci din Cebasev rezulta \( LHS \geq a^2+b^2+c^2\geq \frac{(a+b+c)^2}{3} \).
Yesterday is history,
Tomorow is a mistery,
But today is a gift.
That's why it's called present.
Blog
Tomorow is a mistery,
But today is a gift.
That's why it's called present.
Blog
-
Claudiu Mindrila
- Fermat
- Posts: 520
- Joined: Mon Oct 01, 2007 2:25 pm
- Location: Targoviste
- Contact:
- Cezar Lupu
- Site Admin
- Posts: 612
- Joined: Wed Sep 26, 2007 2:04 pm
- Location: Bucuresti sau Constanta
- Contact:
Beni, este inegalitatea rearanjamentelor ce vrei tu sa zici acolo, insa putem da o solutie ceva mai simpla, anume:Beniamin Bogosel wrote:Cam simpluta...
Tripletele \( (a^3,b^3,c^3) \) si \( (\frac{1}{a},\frac{1}{b},\frac{1}{c}) \) atunci din Cebasev rezulta \( LHS \geq a^2+b^2+c^2\geq \frac{(a+b+c)^2}{3} \).
Din inegalitatea Cauchy-Schwarz, avem ca
\( (ab+bc+ca)\left(\frac{a^3}{b}+\frac{b^3}{c}+\frac{c^3}{a}\right)\geq (a^2+b^2+c^2)^{2} \). Ne mai ramane astfel, sa aratam ca
\( (a^2+b^2+c^2)^2\geq \frac{1}{3}(a+b+c)^{2}(ab+bc+ca) \)
ceea ce este evident din inegalitatile \( 3(a^2+b^2+c^2)\geq (a+b+c)^{2} \) si \( a^2+b^2+c^2\geq ab+bc+ca \). \( \qed \)