Inegalitate de la concursul Arhimede

Moderators: Laurian Filip, Beniamin Bogosel, Filip Chindea

Post Reply
Claudiu Mindrila
Fermat
Posts: 520
Joined: Mon Oct 01, 2007 2:25 pm
Location: Targoviste
Contact:

Inegalitate de la concursul Arhimede

Post by Claudiu Mindrila »

Sa se arate ca pentru orice numere reale strict pozitive \( a,b,c \) are loc inegalitatea: \( \frac{a^3}{b}+\frac{b^3}{c}+\frac{c^3}{a} \geq \frac{(a+b+c)^2}{3} \).
Nicolae Papacu, Concursul revistei Arhimede 2008, faza a 2-a
elev, clasa a X-a, C. N. "C-tin Carabella", Targoviste
User avatar
Beniamin Bogosel
Co-admin
Posts: 710
Joined: Fri Mar 07, 2008 12:01 am
Location: Timisoara sau Sofronea (Arad)
Contact:

Post by Beniamin Bogosel »

Cam simpluta...

Tripletele \( (a^3,b^3,c^3) \) si \( (\frac{1}{a},\frac{1}{b},\frac{1}{c}) \) atunci din Cebasev rezulta \( LHS \geq a^2+b^2+c^2\geq \frac{(a+b+c)^2}{3} \).
Yesterday is history,
Tomorow is a mistery,
But today is a gift.
That's why it's called present. :)

Blog
Claudiu Mindrila
Fermat
Posts: 520
Joined: Mon Oct 01, 2007 2:25 pm
Location: Targoviste
Contact:

Post by Claudiu Mindrila »

Vrei sa spui "inegalitatea rearanjamentelor", nu? :? :D
elev, clasa a X-a, C. N. "C-tin Carabella", Targoviste
User avatar
Cezar Lupu
Site Admin
Posts: 612
Joined: Wed Sep 26, 2007 2:04 pm
Location: Bucuresti sau Constanta
Contact:

Post by Cezar Lupu »

Beniamin Bogosel wrote:Cam simpluta...

Tripletele \( (a^3,b^3,c^3) \) si \( (\frac{1}{a},\frac{1}{b},\frac{1}{c}) \) atunci din Cebasev rezulta \( LHS \geq a^2+b^2+c^2\geq \frac{(a+b+c)^2}{3} \).
Beni, este inegalitatea rearanjamentelor ce vrei tu sa zici acolo, insa putem da o solutie ceva mai simpla, anume:

Din inegalitatea Cauchy-Schwarz, avem ca

\( (ab+bc+ca)\left(\frac{a^3}{b}+\frac{b^3}{c}+\frac{c^3}{a}\right)\geq (a^2+b^2+c^2)^{2} \). Ne mai ramane astfel, sa aratam ca

\( (a^2+b^2+c^2)^2\geq \frac{1}{3}(a+b+c)^{2}(ab+bc+ca) \)

ceea ce este evident din inegalitatile \( 3(a^2+b^2+c^2)\geq (a+b+c)^{2} \) si \( a^2+b^2+c^2\geq ab+bc+ca \). \( \qed \)
Post Reply

Return to “Clasa a IX-a”