Problema (own)
Problema (own)
\( a \cdot b \cdot c = 70 \) si \( a + b + c = 14 \), \( a,b,c \in \mathbb{N} \) aflati \( (a,b,c) \) 
In all this world there is only one pure and magic thing... and it is called PURPLE!
-
Virgil Nicula
- Euler
- Posts: 622
- Joined: Fri Sep 28, 2007 11:23 pm
Re: Problema (own)
Demonstratie.Amaranth wrote:\( a \cdot b \cdot c = 70 \) si \( a + b + c = 14 \), \( a,b,c \in \mathbb{N} \) aflati \( (a,b,c) \)
Presupunem fara a restrange generalitatea ca \( a\le b\le c \) . Deoarece \( a\le \frac {14}{3} \)
( sau o conditie "mai tare" \( a\le \sqrt[3]{70}\le\frac {14}{3} \) , insa suntem la clasa a V - a ! ),
\( a\in\mathbb N \) si \( a \) divide \( 70 \) rezulta ca \( a\in\{1,2\} \) . Distingem doua cazuri :
Cazul 1. \( a=1\Longrightarrow \) \( \left\|\begin{array}{c}
bc=70\\\\
b+c=13\end{array}\right\|\Longrightarrow \) etc \( \Longrightarrow \) \( \emptyset \) .
Cazul . \( a=2\Longrightarrow \) \( \left\|\begin{array}{c}
bc=35\\\\
b+c=12\end{array}\right\|\Longrightarrow \) \( b=5 \) si \( c=7 \) .
In concluzie, \( \{a,b,c\}=\{2,5,7\} \) .
Observatie.
Amaranth, te-as ruga sa nu mai dai indicatii, chiar daca trece si un an fara solutie ...
- miruna.lazar
- Bernoulli
- Posts: 224
- Joined: Wed Oct 08, 2008 8:41 pm
- Location: Tulcea
Am gasit o rezolvare " mai de clasa a V - a " pentru problema asta... Deci:
Il notam pe 70 ca \( 7 \cdot 10 \) , unde 10 este notat \( 2\cdot 5 \)
Deci \( 7\cdot 2 \cdot 5 = 70 \)=> numerele cautate sunt 2 , 5, 7 ( eventual si in alta ordine la scrierea a =... , b=... , c =... )
Il notam pe 70 ca \( 7 \cdot 10 \) , unde 10 este notat \( 2\cdot 5 \)
Deci \( 7\cdot 2 \cdot 5 = 70 \)=> numerele cautate sunt 2 , 5, 7 ( eventual si in alta ordine la scrierea a =... , b=... , c =... )
Last edited by miruna.lazar on Thu Oct 30, 2008 7:56 pm, edited 1 time in total.
- Laurian Filip
- Site Admin
- Posts: 344
- Joined: Sun Nov 25, 2007 2:34 am
- Location: Bucuresti/Arad
- Contact:
dar nu crezi ca simiruna.lazar wrote:Am gasit o rezolvare " mai de clasa a V - a " pentru problema asta... Deci:
Il notam pe 70 ca \( 7 \cdot 10 \) , unde 10 este notat \( 2\cdot 5 \)
Deci \( 7\cdot 2 \cdot 5 = 70 \)=> numerele cautate sunt 2 , 5, 7 ( eventual si in alta ordine la scrierea a =... , b=... , c =... )
\( 1\cdot1\cdot70 = 70 \)
sau \( 1\cdot7\cdot10=70 \)
- miruna.lazar
- Bernoulli
- Posts: 224
- Joined: Wed Oct 08, 2008 8:41 pm
- Location: Tulcea
- Laurian Filip
- Site Admin
- Posts: 344
- Joined: Sun Nov 25, 2007 2:34 am
- Location: Bucuresti/Arad
- Contact:
- miruna.lazar
- Bernoulli
- Posts: 224
- Joined: Wed Oct 08, 2008 8:41 pm
- Location: Tulcea
- Laurian Filip
- Site Admin
- Posts: 344
- Joined: Sun Nov 25, 2007 2:34 am
- Location: Bucuresti/Arad
- Contact:
- miruna.lazar
- Bernoulli
- Posts: 224
- Joined: Wed Oct 08, 2008 8:41 pm
- Location: Tulcea