Problema (own)

Post Reply
User avatar
Amaranth
Thales
Posts: 128
Joined: Sun Oct 19, 2008 5:44 pm

Problema (own)

Post by Amaranth »

\( a \cdot b \cdot c = 70 \) si \( a + b + c = 14 \), \( a,b,c \in \mathbb{N} \) aflati \( (a,b,c) \) :wink:
In all this world there is only one pure and magic thing... and it is called PURPLE!
User avatar
Amaranth
Thales
Posts: 128
Joined: Sun Oct 19, 2008 5:44 pm

Post by Amaranth »

Ganditi-va ca a,b,c < 14 ... Incercati variantele care il vor avea ca produs pe 70.
In all this world there is only one pure and magic thing... and it is called PURPLE!
Virgil Nicula
Euler
Posts: 622
Joined: Fri Sep 28, 2007 11:23 pm

Re: Problema (own)

Post by Virgil Nicula »

Amaranth wrote:\( a \cdot b \cdot c = 70 \) si \( a + b + c = 14 \), \( a,b,c \in \mathbb{N} \) aflati \( (a,b,c) \) :wink:
Demonstratie.

Presupunem fara a restrange generalitatea ca \( a\le b\le c \) . Deoarece \( a\le \frac {14}{3} \)

( sau o conditie "mai tare" \( a\le \sqrt[3]{70}\le\frac {14}{3} \) , insa suntem la clasa a V - a ! ),

\( a\in\mathbb N \) si \( a \) divide \( 70 \) rezulta ca \( a\in\{1,2\} \) . Distingem doua cazuri :

Cazul 1. \( a=1\Longrightarrow \) \( \left\|\begin{array}{c}
bc=70\\\\
b+c=13\end{array}\right\|\Longrightarrow \)
etc \( \Longrightarrow \) \( \emptyset \) .

Cazul . \( a=2\Longrightarrow \) \( \left\|\begin{array}{c}
bc=35\\\\
b+c=12\end{array}\right\|\Longrightarrow \)
\( b=5 \) si \( c=7 \) .

In concluzie, \( \{a,b,c\}=\{2,5,7\} \) .

Observatie.

Amaranth, te-as ruga sa nu mai dai indicatii, chiar daca trece si un an fara solutie ...
User avatar
miruna.lazar
Bernoulli
Posts: 224
Joined: Wed Oct 08, 2008 8:41 pm
Location: Tulcea

Post by miruna.lazar »

Am gasit o rezolvare " mai de clasa a V - a " pentru problema asta... Deci:

Il notam pe 70 ca \( 7 \cdot 10 \) , unde 10 este notat \( 2\cdot 5 \)

Deci \( 7\cdot 2 \cdot 5 = 70 \)=> numerele cautate sunt 2 , 5, 7 ( eventual si in alta ordine la scrierea a =... , b=... , c =... )
Last edited by miruna.lazar on Thu Oct 30, 2008 7:56 pm, edited 1 time in total.
User avatar
Laurian Filip
Site Admin
Posts: 344
Joined: Sun Nov 25, 2007 2:34 am
Location: Bucuresti/Arad
Contact:

Post by Laurian Filip »

miruna.lazar wrote:Am gasit o rezolvare " mai de clasa a V - a " pentru problema asta... Deci:

Il notam pe 70 ca \( 7 \cdot 10 \) , unde 10 este notat \( 2\cdot 5 \)

Deci \( 7\cdot 2 \cdot 5 = 70 \)=> numerele cautate sunt 2 , 5, 7 ( eventual si in alta ordine la scrierea a =... , b=... , c =... )
dar nu crezi ca si
\( 1\cdot1\cdot70 = 70 \)
sau \( 1\cdot7\cdot10=70 \)
User avatar
miruna.lazar
Bernoulli
Posts: 224
Joined: Wed Oct 08, 2008 8:41 pm
Location: Tulcea

Post by miruna.lazar »

Ba da dar acele numere le-am gasit special ca sa aiba suma 14. Pentru ca acel exemplu da alta suma decat 14 ... 72 si 18 :) Problema am facut-o pe maculator , dupa aceea am incercat toate posibilitatile si am scris rezolvarea corecta. Asa a obtinut si domnul Virgil Nicula daca nu ma insel , nu-i asa ?
User avatar
Laurian Filip
Site Admin
Posts: 344
Joined: Sun Nov 25, 2007 2:34 am
Location: Bucuresti/Arad
Contact:

Post by Laurian Filip »

Sunt de acord, dar ce ai scris tu mai sus nu se numeste chiar o "rezolvare". Daca ai fi scris toate cazurile atunci ar fi fost bine. Asa arata ca si cum doar ai fi ghicit solutia.
User avatar
miruna.lazar
Bernoulli
Posts: 224
Joined: Wed Oct 08, 2008 8:41 pm
Location: Tulcea

Post by miruna.lazar »

Ar trebui sa le scriu ca sa fie mai copleta ? Intreb , as vrea sa se inteleaga ca am facut problema aceasta fara sa ghicesc...Dar pana le urma , le-ai scris tu...M-am uitat si exact astea erau si la mine in caiet...:)
User avatar
Laurian Filip
Site Admin
Posts: 344
Joined: Sun Nov 25, 2007 2:34 am
Location: Bucuresti/Arad
Contact:

Post by Laurian Filip »

mai e una
User avatar
miruna.lazar
Bernoulli
Posts: 224
Joined: Wed Oct 08, 2008 8:41 pm
Location: Tulcea

Post by miruna.lazar »

\( 1\cdot {14} \cdot 5 \) ? Eu pe asta am gasit-o


\( {14}\cdot{5} = 70 \)
( ^ _ ^ )
User avatar
Amaranth
Thales
Posts: 128
Joined: Sun Oct 19, 2008 5:44 pm

Post by Amaranth »

si totusi 1+14+5 = 20 :P
In all this world there is only one pure and magic thing... and it is called PURPLE!
Post Reply

Return to “Clasa a 5-a”